Skip to main content
Log in

Large and moderate deviation principles for the bootstrap sample quantile

  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

Let {X, Xn, n ≥ 1} be a sequence of independent identically distributed (i.i.d.) random variables defined on a probability space (Ω, F, ℙ) with common distribution F, and let {X*n,1…,X*n,n} be a bootstrap sample from the empirical distribution Fn. Based on the bootstrap sample, the moderate deviation,Jarge deviation and Bahadur’s asymptotic efficiency of the bootstrap sample pth quantile ξ̂*np are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S. E., Li, D. L., Rosalsky, A. & Volodin, A. I. (2001). Almost sure lim sup behavior of bootstrapped means with applications to pairwise i.i.d. sequences and stationary ergodic sequences Journal of Statistical Planning and Inference, 98 (1-2), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  • Arenal-Gutiérrez, E., Matran, C. & Cuesta-Albertos, J. A. (1996). On the unconditional strong law of large numbers for the bootstrap mean. Statistics & Probability Letters, 27(1), 49–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K. B. (1983). Strong law forthe bootstrap. Statistics & Probability Letters, 1(3), 147–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K. B., Ghosh, M. Low, L. Y., & Sen, P. K. (1984). Laws of large numbers for bootstrapped U-statistics. Journal of Statistical Planning and Inference, 9(2), 185–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Bahadur, R. R. (1966). A note on quantiles in large samples. Annals of Mathematics Statistics, 37, 577–580.

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel, P. J., & Freedman, D. A. (1981). Some asymptotic theory forthe bootstrap. The Annals of Statistics, 9(6), 1196–1217.

    Article  MathSciNet  MATH  Google Scholar 

  • Csörgö, S. (1992). On the law of large numbers forthe bootstrap mean. Statistics & Probability Letters, 14(1), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  • Eforn, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1–26.

    Article  MathSciNet  Google Scholar 

  • Giné, E., & Zinn, J. (1989). Necessary conditions for the bootstrap of the me An. The Annals of Statistics, 17(2), 684–691.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. (1988). Rate of convergence in bootstrap approximations. The Annals of Probability, 16(4), 1665–1684.

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri, S. N., & Sun, S. (2009). A Berry-Esseen theorem for sample quantiles under weak dependence. The Annals of Applied Probability, 19(1), 108–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, D., Rosalsky, A. & Al-Mutairi, D. K. (2002). A large deviation principle for bootstrapped sample means. Proceedings of the Americal Mathematical Society, 130(7), 2133–2138.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J. (1967). On Bahadur’s representation of sample quantiles. Annals of Mathematics Statistics, 38, 1323–1342.

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, Y., Chen, Y. X., & Xu, S. F. (2011). Asymptotic properties of the deviation between order statistics and p-quantile. Communications in Statistics. Theory and Methods, 40(1), 8–14.

    Article  MathSciNet  MATH  Google Scholar 

  • Mikosch, T. (1994). Almost sure convergence of bootstrapped means and U-statistics. Journal of Statistical Planning and Inference, 41(1), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Shao, J., & Chen, Y. Z. (1998). Bootstrapping sample quantiles based on complex survey data under hot deck imputation. Statistica Sinica, 8(4), 1071–1085.

    MathSciNet  MATH  Google Scholar 

  • Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. The Annals of Statistics, 9(6), 1187–1195.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, S. F., & Miao, Y. (2011). Limit behaviors of the deviation between the sample quantiles and the quantile. Filomat, 25(2), 197–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Zuo, Y. (2015). Bahadur representations for bootstrap quantiles. Metrika, 78(5), 597–610.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Miao.

Additional information

This work is supported by IRTSTHN (14IRTSTHN023), NSFC (11471104).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Mu, J., Zhao, J. et al. Large and moderate deviation principles for the bootstrap sample quantile. J. Korean Stat. Soc. 46, 573–582 (2017). https://doi.org/10.1016/j.jkss.2017.04.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jkss.2017.04.003

AMS 2000 subject classifications

Keywords

Navigation