Skip to main content
Log in

Parameter and quantile estimation for the generalized Pareto distribution in peaks over threshold framework

  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, we consider six estimation methods for extreme value modeling and compare their performances, focusing on the generalized Pareto distribution (GPD) in the peaks over threshold (POT) framework. Our goal is to identify the best method in various conditions via a thorough simulation study. In order to compare the estimators in the POT sense, we suggest proper strategies for some estimators originally not developed under the POT framework. The simulation results show that a nonlinear least squares (NLS) based estimator outperforms others in parameter estimation, but there is no clear winner in quantile estimation. For quantile estimation, NLS-based methods perform well even when the sample size is small and the Hill estimator comes to the front when the underlying distribution has a very heavy tail. Applications of EVT cover many different fields and researchers on each field may have their own experimental conditions or practical restrictions. We believe that our results would provide guidance on determining proper estimation method on future analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balkema, A. A., & de Haan, L. (1974). Residual life time at great age. The Annals of Probability, 2, 792–804.

    Article  MathSciNet  Google Scholar 

  • Beirlant, J., Goegebeur, Y. Segers, J., & Teugels, J. (2006). Statistics of extremes: theory and applications. John Wiley & Sons.

    MATH  Google Scholar 

  • Caeiro, F., & Gomes, M. I. (2016). Threshold selection in extreme value analysis. In Extreme value modeling and risk analysis: methods and applications (pp. 69–86).

    MATH  Google Scholar 

  • Caires, S. (2009). A comparative simulation study of the annual maxima and the peaks-over-threshold methods. Tech. rep.. Delft University of Technology.

    Google Scholar 

  • Castillo, E., & Hadi, A. S. (1997). Fitting the generalized pareto distribution to data. Journal of the American Statistical Association, 92, 1609–1620.

    Article  MathSciNet  Google Scholar 

  • Chen, G., & Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of Quality Technology, 27, 154–161.

    Article  Google Scholar 

  • de Haan, L., & Ferreira, A. (2007). Extreme value theory: an introduction. Springer Science & Business Media.

    MATH  Google Scholar 

  • del Castillo, J., & Serra, I. (2015). Likelihood inference for generalized pareto distribution. Computational Statistics and Data Analysis, 83, 116–128.

    Article  MathSciNet  Google Scholar 

  • Dupuis, D. J., & Tsao, M. (1998). A hybrid estimator for generalized pareto and extreme-value distributions. Communications in Statistics—Theory and Methods, 27, 925–941.

    Article  MathSciNet  Google Scholar 

  • Embrechts, P., Kliippelberg, C. & Mikosch, T. (2013). Modelling extremal events for insurance and finance. Springer Science & Business Media.

    Google Scholar 

  • Ferreira, A., & de Haan, L. (2015). On the block maxima method in extreme value theory: PWM estimators. The Annals of Statistics, 43, 276–298.

    Article  MathSciNet  Google Scholar 

  • Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–290.

    Article  Google Scholar 

  • Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics, 44, 423–453.

    Article  MathSciNet  Google Scholar 

  • He, X., & Fung, W. (1999). Method of medians for lifetime data with weibull models. Statistics in Medicine, 18, 1993–2009.

    Article  Google Scholar 

  • Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 3, 1163–1174.

    Article  MathSciNet  Google Scholar 

  • Hosking, J. R., & Wallis, J. R. (1987). Parameters and quantile estimation for the generalized pareto distribution. Technometrics, 29, 339–349.

    Article  MathSciNet  Google Scholar 

  • Huisman, R., Koedijk, K. G., Kool, C.J. M., & Palm, F. (2001). Tail-index estimates in small samples. Journal of Business and Economic Statistics, 19, 208–216.

    Article  MathSciNet  Google Scholar 

  • McNeil, A. J., Saladin, T. (1997). The peaks over thresholds method for estimating high quantiles of loss distributions. In Proceedings of 28th international ASTIN colloquium (pp. 23–43).

    Google Scholar 

  • Park, M., & Kim, J. H. T. (2016). Estimating extreme tail risk measures with generalized pareto distribution. Computational Statistics and Data Analysis, 98, 91–104.

    Article  MathSciNet  Google Scholar 

  • Pickands, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics, 3, 119–131.

    Article  MathSciNet  Google Scholar 

  • Song, J., & Song, S. (2012). A quantile estimation for massive data with generalized pareto distribution. Computational Statistics and Data Analysis, 56, 143–150.

    Article  MathSciNet  Google Scholar 

  • Wada, R., Waseda, T. & Jonathan, P. (2016). Extreme value estimation using the likelihood-weighted method. Ocean Engineering, 124, 241–251.

    Article  Google Scholar 

  • Wang, C., & Chen, G. (2016). A new hybrid estimation method for the generalized pareto distribution. Communications in Statistics—Theory and Methods, 45, 4285–4294.

    Article  MathSciNet  Google Scholar 

  • Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. Journal of the American Statistical Association, 73, 812–815.

    MathSciNet  MATH  Google Scholar 

  • Zhang, J. (2007). Likelihood moment estimation for the generalized pareto distribution. Australian and New Zealand Journal of Statistics, 49, 69–77.

    Article  MathSciNet  Google Scholar 

  • Zhang, J. (2010). Improving on estimation for the generalized pareto distribution. Technometrics, 52, 335–339.

    Article  MathSciNet  Google Scholar 

  • Zhang, J., & Stephens, M. A. (2009). A new and efficient estimation method for the generalized pareto distribution. Technometrics, 51, 316–325.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongwoo Song.

Additional information

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2015S1A5B6036244).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Song, J. Parameter and quantile estimation for the generalized Pareto distribution in peaks over threshold framework. J. Korean Stat. Soc. 46, 487–501 (2017). https://doi.org/10.1016/j.jkss.2017.02.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jkss.2017.02.003

AMS 2000 subject classifications

Keywords

Navigation