Skip to main content

Effects of buffer loading for electrospray ionization mass spectrometry of a noncovalent protein complex that requires high concentrations of essential salts

Abstract

Electrospray ionization (ESI) mass spectrometry (MS) is a powerful method for analyzing the active forms of macromolecular complexes of biomolecules. However, these solutions often contain high concentrations of salts and/or detergents that adversely effect ESI performance by making ion formation less reproducible, causing severe adduction or ion suppression. Many methods for separating complexes from nonvolatile additives are routinely used with ESI-MS, but these methods may not be appropriate for complexes that require such stabilizers for activity. Here, the effects of buffer loading using concentrations of ammonium acetate ranging from 0.22 to 1.41 M on the ESI mass spectra of a solution containing a domain truncation mutant of a σ54 activator from Aquifex aeolicus were studied. This 44.9 kDa protein requires the presence of millimolar concentrations of Mg2+, BeF 3 , and ADP, (at ∼60 °C) to assemble into an active homo-hexamer. Addition of ammonium acetate can improve signal stability and reproducibility, and can significantly lower adduction and background signals. However, at higher concentrations, the relative ion abundance of the hexamer is diminished, while that of the constituent monomer is enhanced. These results are consistent with loss of enzymatic activity as measured by ATP hydrolysis and indicate that the high concentration of ammonium acetate interferes with assembly of the hexamer. This shows that buffer loading with ammonium acetate is effective for obtaining ESI signal for complexes that require high concentrations of essential salts, but can interfere with formation of, and/or destabilize complexes by disrupting crucial electrostatic interactions at high concentration.

References

  1. 1.

    Sharon, M.; Robinson, C. V. The Role of Mass Spectrometry in Structure Elucidation of Dynamic Protein Complexes. Annu. Rev. Biochem. 2007, 76, 167–193.

    CAS  Article  Google Scholar 

  2. 2.

    Wang, L. T.; Lane, L. C.; Smith, D. L. Detecting Structural Changes in Viral Capsids by Hydrogen Exchange and Mass Spectrometry. Protein Sci. 2001, 10, 1234–1243.

    CAS  Article  Google Scholar 

  3. 3.

    Kapur, A.; Beck, J. L.; Brown, S. E.; Dixon, N. E.; Sheil, M. M. Use of Electrospray Ionization Mass Spectrometry to Study Binding Interactions Between a Replication Terminator Protein and DNA. Protein Sci. 2002, 11, 147–157.

    CAS  Article  Google Scholar 

  4. 4.

    Krishnaswamy, S. R.; Williams, E. R.; Kirsch, J. F. Free Energies of Protein-Protein Association Determined by Electrospray Ionization Mass Spectrometry Correlate Accurately with Values Obtained by Solution Methods. Protein Sci. 2006, 15, 1465–1475.

    CAS  Article  Google Scholar 

  5. 5.

    Daneshfar, R.; Kitova, E. N.; Klassen, J. S. Determination of Protein-Ligand Association Thermochemistry Using Variable-Temperature Nanoelectrospray Mass Spectrometry. J. Am. Chem. Soc. 2004, 126, 4786–4787.

    CAS  Article  Google Scholar 

  6. 6.

    van Duijn, E.; Simmons, D. A.; van den Heuvel, R. H. H.; Bakkes, P. J.; van Heerikhuizen, H.; Heeren, R. M. A.; Robinson, C. V.; van der Vies, S. M.; Heck, A. J. R. Tandem Mass Spectrometry of Intact GroEL-Substrate Complexes Reveals Substrate-Specific Conformational Changes in the Trans Ring. J. Am. Chem. Soc. 2006, 128, 4694–4702.

    Article  Google Scholar 

  7. 7.

    Fandrich, M.; Tito, M. A.; Leroux, M. R.; Rostom, A. A.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V. Observation of the Noncovalent Assembly and Disassembly Pathways of the Chaperone Complex MtGimC by Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14151–14155.

    CAS  Article  Google Scholar 

  8. 8.

    Hernandez, H.; Robinson, C. V. Determining the Stoichiometry and Interactions of Macromolecular Assemblies from Mass Spectrometry. Nat. Protoc. 2007, 2, 715–726.

    CAS  Article  Google Scholar 

  9. 9.

    Bishop, G. R.; Davidson, V. L. Catalytic Role of Monovalent Cations in the Mechanism of Proton Transfer which Gates an Interprotein Electron Transfer Reaction. Biochemistry 1997, 36, 13586–13592.

    CAS  Article  Google Scholar 

  10. 10.

    Chi, C. N.; Engstrom, A.; Gianni, S.; Larsson, M.; Jemth, P. Two Conserved Residues Govern the Salt and pH Dependencies of the Binding Reaction of a PDZ Domain. J. Biol. Chem. 2006, 281, 36811–36818.

    CAS  Article  Google Scholar 

  11. 11.

    Hiasa, H.; Shea, M. E.; Richardson, C. M.; Gwynn, M. N. Staphylococcus aureus Gyrase-Quinolone-DNA Ternary Complexes Fail to Arrest Replication Fork Progression In Vitro—Effects of Salt on the DNA Binding Mode and the Catalytic Activity of S. aureus Gyrase. J. Biol. Chem. 2003, 278, 8861–8868.

    CAS  Article  Google Scholar 

  12. 12.

    Padua, R. A.; Nagy, J. I.; Geiger, J. D. Ionic-Strength Dependence of Calcium, Adenine-Nucleotide, Magnesium, and Caffeine Actions on Ryanodine Receptors in Rat Brain. J. Neurochem. 1994, 62, 2340–2348.

    CAS  Article  Google Scholar 

  13. 13.

    Waas, W. F.; Dalby, K. N. Physiologic Concentrations of Divalent Magnesium Ion Activate the Serine/Threonine Specific Protein Kinase ERK2. Biochemistry 2003, 42, 2960–2970.

    CAS  Article  Google Scholar 

  14. 14.

    Salhany, J. M.; Sloan, R. L.; Cordes, K. S. The Carboxyl Side Chain of Glutamate 681 Interacts with a Chloride Binding Modifier Site that Allosterically Modulates the Dimeric Conformational State of Band 3 (AE1). Implications for the Mechanism of Anion/Proton Cotransport. Biochemistry 2003, 42, 1589–1602.

    CAS  Article  Google Scholar 

  15. 15.

    Fedosova, N. U.; Esmann, M. Nucleotide-Binding Kinetics of Na, K-ATPase: Cation Dependence. Biochemistry 2004, 43, 4212–4218.

    CAS  Article  Google Scholar 

  16. 16.

    Jackson, A. U.; Talaty, N.; Cooks, R. G.; Van Berkel, G. J. Salt Tolerance of Desorption Electrospray Ionization (DESI). J. Am. Soc. Mass Spectrom. 2007, 18, 2218–2225.

    CAS  Article  Google Scholar 

  17. 17.

    McDonnell, L. A.; Heeren, R. M. A. Imaging Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 606–643.

    CAS  Article  Google Scholar 

  18. 18.

    Pan, J. X.; Xu, K.; Yang, X. D.; Choy, W. Y.; Konermann, L. Solution-Phase Chelators for Suppressing Nonspecific Protein-Metal Interactions in Electrospray Mass Spectrometry. Anal. Chem. 2009, 81, 5008–5015.

    CAS  Article  Google Scholar 

  19. 19.

    de Boer, A. R.; Letzel, T.; Lingeman, H.; Irth, H. Systematic Development of an Enzymatic Phosphorylation Assay Compatible with Mass Spectrometric Detection. Anal. Bioanal. Chem. 2005, 381, 647–655.

    CAS  Article  Google Scholar 

  20. 20.

    Iavarone, A. T.; Udekwu, O. A.; Williams, E. R. Buffer Loading for Counteracting Metal Salt-Induced Signal Suppression in Electrospray Ionization. Anal. Chem. 2004, 76, 3944–3950.

    CAS  Article  Google Scholar 

  21. 21.

    Watt, S. J.; Urathamakul, T.; Schaeffer, P. M.; Williams, N. K.; Sheil, M. M.; Dixon, N. E.; Beck, J. L. Multiple Oligomeric Forms of Escherichia coli DnaB Helicase Revealed by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 132–140.

    CAS  Article  Google Scholar 

  22. 22.

    Siezen, R. J.; Bindels, J. G.; Hoenders, H. J. The Quaternary Structure of Bovine Alpha-Crystallin—Effects of Variation in Alkaline pH, Ionic-Strength, Temperature. Eur. J. Biochem. 1980, 111, 435–444.

    CAS  Article  Google Scholar 

  23. 23.

    Brenowitz, M.; Bonaventura, C; Bonaventura, J. Assembly and Calcium-Induced Cooperativity of Limulus-IV Hemocyanin—a Model System for Analysis of Structure-Function Relationships in the Absence of Subunit Heterogeneity. Biochemistry 1983, 22, 4707–4713.

    CAS  Article  Google Scholar 

  24. 24.

    Wagner, R.; Gonzalez, D. H.; Podesta, F. E.; Andreo, C. S. Changes in the Quaternary Structure of Phosphoenolpyruvate Carboxylase Induced by Ionic-Strength Affect Its Catalytic Activity. Eur. J. Biochem. 1987, 164, 661–666.

    CAS  Article  Google Scholar 

  25. 25.

    Valero, E.; Debonis, S.; Filhol, O.; Wade, R. H.; Langowski, J.; Chambaz, E. M.; Cochet, C. Quaternary Structure of Casein Kinase-2 Characterization of Multiple Oligomeric States and Relation with Its Catalytic Activity. J. Biol. Chem. 1995, 270, 8345–8352.

    CAS  Article  Google Scholar 

  26. 26.

    Smith, S. P.; Barber, K. R.; Dunn, S. D.; Shaw, G. S. Structural Influence of Cation Binding to Recombinant Human Brain S100b: Evidence for Calcium-Induced Exposure of a Hydrophobic Surface. Biochemistry 1996, 35, 8805–8814.

    CAS  Article  Google Scholar 

  27. 27.

    Bertenshaw, G. P.; Norcum, M. T.; Bond, J. S. Structure of Homo- and Hetero-Oligomeric Meprin Metalloproteases—Dimers, Tetramers, and High Molecular Mass Multimers. J. Biol. Chem. 2003, 278, 2522–2532.

    CAS  Article  Google Scholar 

  28. 28.

    Batchelor, J. D.; Doucleff, M.; Lee, C.-J.; Matsubara, K.; De Carlo, S.; Heideker, J.; Lamers, M. H.; Pelton, J. G.; Wemmer, D. E. Structure and Regulatory Mechanism of Aquifex aeolicus NtrC4: Variability and Evolution in Bacterial Transcriptional Regulation. J. Mol. Biol. 2008, 384, 1058–1075.

    CAS  Article  Google Scholar 

  29. 29.

    Batchelor, J. D.; Sterling, H. J.; Hong, E.; Williams, E. R.; Wemmer, D. E. Receiver Domains Control the Active-State Stoichiometry of Aquifex aeolicus α 54 Activator NtrC4, as Revealed by Electrospray Ionization Mass Spectrometry. J. Mol. Biol. 2009, 393, 634–643.

    CAS  Article  Google Scholar 

  30. 30.

    Chen, B.; Guo, Q.; Guo, Z.; Wang, X. An Improved Activity Assay Method for Arginine Kinase Based on a Ternary Heteropolyacid System. Tsinghua Sci. Technol. 2003, 8, 422–427.

    CAS  Google Scholar 

  31. 31.

    Sterling, H. J.; Williams, E. R. Origin of Supercharging in Electrospray Ionization of Noncovalent Complexes from Aqueous Solution. J. Am. Soc. Mass Spectrom. 2009, 20, 1933–1943.

    CAS  Article  Google Scholar 

  32. 32.

    McKay, A. R.; Ruotolo, B. T.; Ilag, L. L.; Robinson, C. V. Mass Measurements of Increased Accuracy Resolve Heterogeneous Populations of Intact Ribosomes. J. Am. Chem. Soc. 2006, 128, 11433–11442.

    CAS  Article  Google Scholar 

  33. 33.

    Zhou, M.; Sandercock, A. M.; Fraser, C. S.; Ridlova, G.; Stephens, E.; Schenauer, M. R.; Yokoi-Fong, T.; Barsky, D.; Leary, J. A.; Hershey, J. W.; Doudna, J. A.; Robinson, C. V. Mass Spectrometry Reveals Modularity and a Complete Subunit Interaction Map of the Eukaryotic Translation Factor EIF3. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18139–18144.

    CAS  Article  Google Scholar 

  34. 34.

    Lee, S. Y.; Torre, A.; Yan, D.; Kustu, S.; Nixon, B. T.; Wemmer, D. E. Regulation of the Transcriptional Activator NtrC1: Structural Studies of the Regulatory and AAA+ ATPase Domains. Genes Dev. 2003, 17, 2552–2563.

    CAS  Article  Google Scholar 

  35. 35.

    Doucleff, M.; Chen, B.; Maris, A. E.; Wemmer, D. E.; Kondrashkina, E.; Nixon, B. T. Negative Regulation of AAA+ ATPase Assembly by Two Component Receiver Domains: A Transcription Activation Mechanism that is Conserved in Mesophilic and Extremely Hyperthermophilic Bacteria. J. Mol. Biol. 2005, 353, 242–255.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evan R. Williams.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sterling, H.J., Batchelor, J.D., Wemmer, D.E. et al. Effects of buffer loading for electrospray ionization mass spectrometry of a noncovalent protein complex that requires high concentrations of essential salts. J Am Soc Mass Spectrom 21, 1045–1049 (2010). https://doi.org/10.1016/j.jasms.2010.02.003

Download citation

Keywords

  • Ammonium Acetate
  • Electrospray Ionization Mass Spectrometry
  • Charge State Distribution
  • Noncovalent Complex
  • Desorption Electrospray Ionization