Skip to main content

Collective mass spectrometry approaches reveal broad and combinatorial modification of high mobility group protein A1a

Abstract

Transcriptional states are formed and maintained by the interaction and post-translational modification (PTM) of several chromatin proteins, such as histones and high mobility group (HMG) proteins. Among these, HMGA1a, a small heterochromatin-associated nuclear protein has been shown to be post-translationally modified, and some of these PTMs have been linked to apoptosis and cancer. In cancerous cells, HMGA1a PTMs differ between metastatic and nonmetastatic cells, suggesting the existence of an HMGA1a PTM code analogous to the “histone code.” In this study, we expand on current knowledge by comprehensively characterizing PTMs on HMGA1a purified from human cells using both nanoflow liquid chromatography collision activated dissociation mediated Bottom Up and electron-transfer dissociation facilitated middle and Top Down mass spectrometry (MS). We find HMGA1a to be pervasively modified with many types of modifications such as methylation, acetylation, and phosphorylation, including finding novel sites. While Bottom Up MS identified lower level modification sites, Top and Middle Down MS were utilized to identify the most commonly occurring combinatorially modified forms. Remarkably, although we identify several individual modification sites through our Bottom Up and Middle Down MS analyses, we find relatively few combinatorially modified forms dominate the population through Top Down proteomics. The main combinatorial PTMs we find through the Top Down approach are N-terminal acetylation, Arg25 methylation along with phosphorylation of the three most C-terminal serine residues in primarily a diphosphorylated form. This report presents one of the most detailed analyses of HMGA1a to date and illustrates the strength of using a combined MS effort.

References

  1. Bernstein, B. E.; Meissner, A.; Lander, E. S. The Mammalian Epigenome. Cell 2007, 128, 669–681.

    CAS  Article  Google Scholar 

  2. Cheung, P.; Allis, C. D.; Sassone-Corsi, P. Signaling to Chromatin through Histone Modifications. Cell 2000, 103, 263–271.

    CAS  Article  Google Scholar 

  3. Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705.

    CAS  Article  Google Scholar 

  4. Lachner, M.; O’Carroll, D.; Rea, S.; Mechtler, K.; Jenuwein, T. Methylation of Histone H3 Lysine 9 Creates a Binding Site for Hp1 Proteins. Nature 2001, 410, 116–120.

    CAS  Article  Google Scholar 

  5. Bannister, A. J.; Zegerman, P.; Partridge, J. F.; Miska, E. A.; Thomas, J. O.; Allshire, R. C.; Kouzarides, T. Selective Recognition of Methylated Lysine 9 on Histone H3 by the Hp1 Chromo Domain. Nature 2001, 410, 120–124.

    CAS  Article  Google Scholar 

  6. Grosschedl, R.; Giese, K.; Pagel, J. HMG Domain Proteins: Architectural Elements in the Assembly of Nucleoprotein Structures. Trends Genet. 1994, 10, 94–100.

    CAS  Article  Google Scholar 

  7. Zhang, Q.; Wang, Y. High Mobility Group Proteins and Their Post-Translational Modifications. Biochim. Biophys. Acta 2008, 1784, 1159–1166.

    CAS  Article  Google Scholar 

  8. Chiappetta, G.; Bandiera, A.; Berlingieri, M. T.; Visconti, R.; Manfioletti, G.; Battista, S.; Martinez-Tello, F. J.; Santoro, M.; Giancotti, V.; Fusco, A. The Expression of the High Mobility Group Hmgi (Y) Proteins Correlates with the Malignant Phenotype of Human Thyroid Neoplasias. Oncogene 1995, 10, 1307–1314.

    CAS  Google Scholar 

  9. Giancotti, V.; Berlingieri, M. T.; DiFiore, P. P.; Fusco, A.; Vecchio, G.; Crane-Robinson, C. Changes in Nuclear Proteins on Transformation of Rat Epithelial Thyroid Cells by a Murine Sarcoma Retrovirus. Cancer Res. 1985, 45, 6051–6057.

    CAS  Google Scholar 

  10. Giancotti, V.; Buratti, E.; Perissin, L.; Zorzet, S.; Balmain, A.; Portella, G.; Fusco, A.; Goodwin, G. H. Analysis of the Hmg-I Nuclear Proteins in Mouse Neoplastic Cells Induced by Different Procedures. Exp. Cell. Res. 1989, 184, 538–545.

    CAS  Article  Google Scholar 

  11. Chiappetta, G.; Avantaggiato, V.; Visconti, R.; Fedele, M.; Battista, S.; Trapasso, F.; Merciai, B. M.; Fidanza, V.; Giancotti, V.; Santoro, M.; Simeone, A.; Fusco, A. High Level Expression of the Hmgi (Y) Gene During Embryonic Development. Oncogene 1996, 13, 2439–2446.

    CAS  Google Scholar 

  12. Zhou, X.; Benson, K. F.; Ashar, H. R.; Chada, K. Mutation Responsible for the Mouse Pygmy Phenotype in the Developmentally Regulated Factor Hmgi-C. Nature 1995, 376, 771–774.

    CAS  Article  Google Scholar 

  13. Amirand, C.; Viari, A.; Ballini, J. P.; Rezaei, H.; Beaujean, N.; Jullien, D.; Kas, E.; Debey, P. Three Distinct Sub-Nuclear Populations of Hmg-I Protein of Different Properties Revealed by Co-Localization Image Analysis. J. Cell Sci. 1998, 111(Pt. 23), 3551–3561.

    CAS  Google Scholar 

  14. Martelli, A. M.; Riccio, M.; Bareggi, R.; Manfioletti, G.; Tabellini, G.; Baldini, G.; Narducci, P.; Giancotti, V. Intranuclear Distribution of Hmgi/Y Proteins. An Immunocytochemical Study. J. Histochem. Cytochem. 1998, 46, 863–864.

    CAS  Article  Google Scholar 

  15. Reeves, R.; Wolffe, A. P. Substrate Structure Influences Binding of the Non-Histone Protein Hmg-I(Y) to Free Nucleosomal DNA. Biochemistry 1996, 35, 5063–5074.

    CAS  Article  Google Scholar 

  16. Reeves, R.; Nissen, M. S. Interaction of High Mobility Group-I (Y) Nonhistone Proteins with Nucleosome Core Particles. J. Biol. Chem. 1993, 268, 21137–21146.

    CAS  Google Scholar 

  17. Reeves, R.; Leonard, W. J.; Nissen, M. S. Binding of Hmg-I(Y) Imparts Architectural Specificity to a Positioned Nucleosome on the Promoter of the Human Interleukin-2 Receptor α Gene. Mol. Cell. Biol. 2000, 20, 4666–4679.

    CAS  Article  Google Scholar 

  18. Elton, T. S.; Reeves, R.; Purification and Postsynthetic Modifications of Friend Erythroleukemic Cell High Mobility Group Protein Hmg-I. Anal. Biochem. 1986, 157, 53–62.

    CAS  Article  Google Scholar 

  19. Lund, T.; Holtlund, J.; Laland, S. G. On the Phosphorylation of Low Molecular Mass Hmg (High Mobility Group) Proteins in Ehrlich Ascites Cells. FEBS Lett. 1985, 180, 275–279.

    CAS  Article  Google Scholar 

  20. Nissen, M. S.; Langan, T. A.; Reeves, R. Phosphorylation by Cdc2 Kinase Modulates DNA Binding Activity of High Mobility Group I Nonhistone Chromatin Protein. J. Biol. Chem. 1991, 266, 19945–19952.

    CAS  Google Scholar 

  21. Harrer, M.; Luhrs, H.; Bustin, M.; Scheer, U.; Hock, R. Dynamic Interaction of Hmga1a Proteins with Chromatin. J. Cell. Sci. 2004, 117, 3459–3471.

    CAS  Article  Google Scholar 

  22. Banks, G. C.; Li, Y.; Reeves, R. Differential In Vivo Modifications of the Hmgi(Y) Nonhistone Chromatin Proteins Modulate Nucleosome and DNA Interactions. Biochemistry 2000, 39, 8333–8346.

    CAS  Article  Google Scholar 

  23. Edberg, D. D.; Bruce, J. E.; Siems, W. F.; Reeves, R. In Vivo Posttranslational Modifications of the High Mobility Group A1a Proteins in Breast Cancer Cells of Differing Metastatic Potential. Biochemistry 2004, 43, 11500–11515.

    CAS  Article  Google Scholar 

  24. Sgarra, R.; Diana, F.; Bellarosa, C.; Dekleva, V.; Rustighi, A.; Toller, M.; Manfioletti, G.; Giancotti, V. During Apoptosis of Tumor Cells Hmga1a Protein Undergoes Methylation: Identification of the Modification Site by Mass Spectrometry. Biochemistry 2003, 42, 3575–3585.

    CAS  Article  Google Scholar 

  25. Edberg, D. D.; Adkins, J. N.; Springer, D. L.; Reeves, R. Dynamic and Differential In Vivo Modifications of the Isoform Hmga1a and Hmga1b Chromatin Proteins. J. Biol. Chem. 2005, 280, 8961–8973.

    CAS  Article  Google Scholar 

  26. Zou, Y.; Wang, Y. Tandem Mass Spectrometry for the Examination of the Post-Translational Modifications of High-Mobility Group A1 Proteins: Symmetric and Asymmetric Dimethylation of Arg25 in Hmga1a Protein. Biochemistry 2005, 44, 6293–6301.

    CAS  Article  Google Scholar 

  27. Sgarra, R.; Lee, J.; Tessari, M. A.; Altamura, S.; Spolaore, B.; Giancotti, V.; Bedford, M. T.; Manfioletti, G. The At-Hook of the Chromatin Architectural Transcription Factor High Mobility Group A1a Is Arginine-Methylated by Protein Arginine Methyltransferase 6. J. Biol. Chem. 2006, 281, 3764–3772.

    CAS  Article  Google Scholar 

  28. Jiang, X.; Wang, Y. Acetylation and Phosphorylation of High-Mobility Group A1 Proteins in Pc-3 Human Tumor Cells. Biochemistry 2006, 45, 7194–7201.

    CAS  Article  Google Scholar 

  29. Zou, Y.; Wang, Y. Mass Spectrometric Analysis of High-Mobility Group Proteins and Their Post-Translational Modifications in Normal and Cancerous Human Breast Tissues. J. Proteome Res. 2007, 6, 2304–2314.

    CAS  Article  Google Scholar 

  30. Zhang, Q.; Zhang, K.; Zou, Y.; Perna, A.; Wang, Y. A Quantitative Study on the In Vitro and In Vivo Acetylation of High Mobility Group A1 Proteins. J. Am. Soc. Mass Spectrom. 2007, 18, 1569–1578.

    CAS  Article  Google Scholar 

  31. Zou, Y.; Webb, K.; Perna, A. D.; Zhang, Q.; Clarke, S.; Wang, Y. A Mass Spectrometric Study on the in Vitro Methylation of Hmga1a and Hmga1b Proteins by PRMT s: Methylation Specificity, the Effect of Binding to At-Rich Duplex DNA, and the Effect of C-Terminal Phosphorylation. Biochemistry 2007, 46, 7896–7906.

    CAS  Article  Google Scholar 

  32. Sgarra, R.; Maurizio, E.; Zammitti, S.; Lo Sardo, A.; Giancotti, V.; Manfioletti, G. Macroscopic Differences in Hmga Oncoproteins Post-Translational Modifications: C-Terminal Phosphorylation of Hmga2 Affects Its DNA Binding Properties. J. Proteome Res. 2009, 8, 2978–2989.

    CAS  Article  Google Scholar 

  33. Garcia, B. A.; Shabanowitz, J.; Hunt, D. F. Characterization of Histones and Their Post-Translational Modifications by Mass Spectrometry. Curr. Opin. Chem. Biol. 2007, 11, 66–73.

    CAS  Article  Google Scholar 

  34. Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L. Quantitative Analysis of Modified Proteins and Their Positional Isomers by Tandem Mass Spectrometry: Human Histone H4. Anal. Chem. 2006, 78, 4271–4280.

    CAS  Article  Google Scholar 

  35. Boyne, M. T.; 2nd; Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L. Precise Characterization of Human Histones in the H2a Gene Family by Top Down Mass Spectrometry. J. Proteome Res. 2006, 5, 248–253.

    CAS  Article  Google Scholar 

  36. Thomas, C. E.; Kelleher, N. L.; Mizzen, C. A. Mass Spectrometric Characterization of Human Histone H3: A Bird’s Eye View. J. Proteome Res. 2006, 5, 240–247.

    CAS  Article  Google Scholar 

  37. Garcia, B. A.; Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L. Pervasive Combinatorial Modification of Histone H3 in Human Cells. Nat. Methods 2007, 4, 487–489.

    CAS  Article  Google Scholar 

  38. Reeves, R. Hmga Proteins: Isolation, Biochemical Modifications, and Nucleosome Interactions. Methods Enzymol. 2004, 375, 297–322.

    CAS  Article  Google Scholar 

  39. Garcia, B. A.; Mollah, S.; Ueberheide, B. M.; Busby, S. A.; Muratore, T. L.; Shabanowitz, J.; Hunt, D. F. Chemical Derivatization of Histones for Facilitated Analysis by Mass Spectrometry. Nat. Protoc. 2007, 2, 933–938.

    CAS  Article  Google Scholar 

  40. Plazas-Mayorca, M. D.; Zee, B. M.; Young, N. L.; Fingerman, I. M.; Leroy, G.; Briggs, S. D.; Garcia, B. A. One-Pot Shotgun Quantitative Mass Spectrometry Characterization of Histones. J. Proteome Res. 2009, 8(11), 5367–5374.

    CAS  Article  Google Scholar 

  41. Rappsilber, J.; Ishihama, Y.; Mann, M. Stop and Go Extraction Tips for Matrix-Assisted Laser Desorption/Ionization, Nanoelectrospray, and LC/Ms Sample Pretreatment in Proteomics. Anal. Chem. 2003, 75, 663–670.

    CAS  Article  Google Scholar 

  42. MacCoss, M. J.; Wu, C. C.; Yates, J. R. III. Probability-Based Validation of Protein Identifications Using a Modified SEQUEST Algorithm. Anal. Chem. 2002, 74, 5593–5599.

    CAS  Article  Google Scholar 

  43. Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated Reduction and Interpretation of High Resolution Electrospray Mass Spectra of Large Molecules. J. Am. Soc. Mass Spectrom. 2000, 11, 320–332.

    CAS  Article  Google Scholar 

  44. Dimaggio, P. A. Jr.; Young, N. L.; Baliban, R. C.; Garcia, B. A.; Floudas, C. A. A Mixed-Integer Linear Optimization Framework for the Identification and Quantification of Targeted Post-Translational Modifications of Highly Modified Proteins Using Multiplexed Electron Transfer Dissociation Tandem Mass Spectrometry. Mol. Cell. Proteom. 2009, 8(11), 2527–2543.

    CAS  Article  Google Scholar 

  45. Phanstiel, D.; Brumbaugh, J.; Berggren, W. T.; Conard, K.; Feng, X.; Levenstein, M. E.; McAlister, G. C.; Thomson, J. A.; Coon, J. J. Mass Spectrometry Identifies and Quantifies 74 Unique Histone H4 Isoforms in Differentiating Human Embryonic Stem Cells. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 4093–4098.

    CAS  Article  Google Scholar 

  46. Wisniewski, J. R.; Zougman, A.; Mann, M. Nepsilon-Formylation of Lysine Is a Widespread Post-Translational Modification of Nuclear Proteins Occurring at Residues Involved in Regulation of Chromatin Function. Nucleic Acids Res. 2008, 36, 570–577.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This publication is dedicated to Professor Neil L. Kelleher, the 2009 Biemann Medal award recipient, whose continued dedication and extensive research work have propagated mass spectrometry studies of intact proteins and scientific careers thereof world-wide.

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Young, N.L., Plazas-Mayorca, M.D., DiMaggio, P.A. et al. Collective mass spectrometry approaches reveal broad and combinatorial modification of high mobility group protein A1a. J Am Soc Mass Spectrom 21, 960–970 (2010). https://doi.org/10.1016/j.jasms.2010.01.020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2010.01.020

Keywords

  • Mass Spectrometry Analysis
  • High Mobility Group
  • HMGA Protein
  • Propionic Anhydride
  • Grow HeLa Cell