Charge remote fragmentation in electron capture and electron transfer dissociation

  • Xiaojuan Li
  • Cheng Lin
  • Liang Han
  • Catherine E. Costello
  • Peter B. O’Connor
Article

Abstract

Secondary fragmentations of three synthetic peptides (human αA crystallin peptide 1-11, the deamidated form of human βB2 crystallin peptide 4-14, and amyloid β peptide 25-35) were studied in both electron capture dissociation (ECD) and electron-transfer dissociation (ETD) mode. In ECD, in addition to c and z· ion formations, charge remote fragmentations (CRF) of z· ions were abundant, resulting in internal fragment formation or partial/entire side-chain losses from amino acids, sometimes several residues away from the backbone cleavage site, and to some extent multiple side-chain losses. The internal fragments were observed in peptides with basic residues located in the middle of the sequences, which was different from most tryptic peptides with basic residues located at the C-terminus. These secondary cleavages were initiated by hydrogen abstraction at the α-, β-, or γ-position of the amino acid side chain. In comparison, ETD generates fewer CRF fragments than ECD. This secondary cleavage study will facilitate ECD/ETD spectra interpretation, and help de novo sequencing and database searching.

Supplementary material

13361_2011_210400646_MOESM1_ESM.ppt (43 kb)
Supplementary material, approximately 44 KB.
13361_2011_210400646_MOESM2_ESM.doc (516 kb)
Supplementary material, approximately 528 KB.
13361_2011_210400646_MOESM3_ESM.ppt (42 kb)
Supplementary material, approximately 43 KB.

References

  1. 1.
    Masterson, D. S.; Yin, H. Y.; Chacon, A.; Hachey, D. L.; Norris, J. L.; Porter, N. A. Lysine Peroxycarbamates: Free Radical-Promoted Peptide Cleavage. J. Am. Chem. Soc. 2004, 126, 720–721.CrossRefGoogle Scholar
  2. 2.
    Yin, H.; Chacon, A.; Porter, N. A.; Yin, H. Y.; Masterson, D. S. Free Radical-Induced Site-Specific Peptide Cleavage in the Gas Phase: Low-Energy Collision-Induced Dissociation in ESI- and MALDI Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 807–816.CrossRefGoogle Scholar
  3. 3.
    Hodyss, R.; Cox, H. A.; Beauchamp, J. L. Bioconjugates for Tunable Peptide Fragmentation: Free Radical Initiated Peptide Sequencing (FRIPS). J. Am. Chem. Soc. 2005, 127, 12436–12437.CrossRefGoogle Scholar
  4. 4.
    Hao, G.; Gross, S. S. Electrospray Tandem Mass Spectrometry Analysis of S- and N-Nitrosopeptides: Facile Loss of NO and Radical-Induced Fragmentation. J. Am. Soc. Mass Spectrom. 2006, 17, 1725–1730.CrossRefGoogle Scholar
  5. 5.
    Wee, S.; Mortimer, A.; Moran, D.; Wright, A.; Barlow, C. K.; O’Hair, R. A. J.; Radom, L.; Easton, C. J. Gas-Phase Regiocontrolled Generation of Charged Amino Acid and Peptide Radicals. Chem. Commun. 2006, (40), 4233–4235.Google Scholar
  6. 6.
    Diedrich, J. K.; Julian, R. R. Site-Specific Radical Directed Dissociation of Peptides at Phosphorylated Residues. J. Am. Chem. Soc. 2008, 130, 12212–12213.CrossRefGoogle Scholar
  7. 7.
    Ly, T.; Julian, R. R. Residue-Specific Radical-Directed Dissociation of Whole Proteins in the Gas Phase. J. Am. Chem. Soc. 2008, 130, 351–358.CrossRefGoogle Scholar
  8. 8.
    Chu, I. K.; Rodriquez, C. F.; Lau, T. C.; Hopkinson, A. C.; Siu, K. W. M. Molecular Radical Cations of Oligopeptides. J. Phys. Chem. B. 2000, 104, 3393–3397.CrossRefGoogle Scholar
  9. 9.
    Bagheri-Majdi, E.; Ke, Y. Y.; Orlova, G.; Chu, I. K.; Hopkinson, A. C.; Siu, K. W. M. Copper-Mediated Peptide Radical Ions in the Gas Phase. J. Phys. Chem. B. 2004, 108, 11170–11181.CrossRefGoogle Scholar
  10. 10.
    Barlow, C. K.; McFadyen, W. D.; O’Hair, R. A. J. Formation of Cationic Peptide Radicals by Gas-Phase Redox Reactions with Trivalent Chromium, Manganese, Iron, and Cobalt Complexes. J. Am. Chem. Soc. 2005, 127, 6109–6115.CrossRefGoogle Scholar
  11. 11.
    Laskin, J.; Yang, Z. B.; Lam, C.; Chu, I. K. Charge-Remote Fragmentation of Odd-Electron Peptide Ions. Anal. Chem. 2007, 79, 6607–6614.CrossRefGoogle Scholar
  12. 12.
    Sun, Q. Y.; Nelson, H.; Ly, T.; Stoltz, B. M.; Julian, R. R. Side-Chain Chemistry Mediates Backbone Fragmentation in Hydrogen Deficient Peptide Radicals. J. Proteome Res. 2009, 8, 958–966.CrossRefGoogle Scholar
  13. 13.
    Ly, T.; Yin, S.; Loo, J. A.; Julian, R. R. Electron-Induced Dissociation of Protonated Peptides Yields Backbone Fragmentation Consistent with a Hydrogen-Deficient Radical. Rapid Commun. Mass Spectrom. 2009, 23, 2099–2101.CrossRefGoogle Scholar
  14. 14.
    Lioe, H.; O’Hair, R. A. J. Comparison of Collision-Induced Dissociation and Electron-Induced Dissociation of Singly Protonated Aromatic Amino Acids, Cystine, and Related Simple Peptides Using a Hybrid Linear Ion Trap-FT-ICR Mass Spectrometer. Anal. Bioanal. Chem. 2007, 389, 1429–1437.CrossRefGoogle Scholar
  15. 15.
    Budnik, B. A.; Haselmann, K. F.; Elkin, Y. N.; Gorbach, V. I.; Zubarev, R. A. Applications of Electron-Ion Dissociation Reactions for Analysis of Polycationic Chitooligosaccharides in Fourier Transform Mass Spectrometry. Anal. Chem. 2003, 75, 5994–6001.CrossRefGoogle Scholar
  16. 16.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations: A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  17. 17.
    Zubarev, R. A.; Haselmann, K. F.; Budnik, B.; Kjeldsen, F.; Jensen, F. Towards an Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and Modern Ideas. Eur. J. Mass Spectrom. 2002, 8, 337–349.CrossRefGoogle Scholar
  18. 18.
    Syrstad, E. A.; Turecek, F. Toward a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224.CrossRefGoogle Scholar
  19. 19.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  20. 20.
    Mikesh, L. M.; Ueberheide, B.; Chi, A.; Coon, J. J.; Syka, J. E. P.; Shabanowitz, J.; Hunt, D. F. The Utility of ETD Mass Spectrometry in Proteomic Analysis. BBA-Prot. Proteom. 2006, 1764, 1811–1822.CrossRefGoogle Scholar
  21. 21.
    Coon, J. J.; Shabanowitz, J.; Hunt, D. F.; Syka, J. E. P. Electron Transfer Dissociation of Peptide Anions. J. Am. Soc. Mass Spectrom. 2005, 16, 880–882.CrossRefGoogle Scholar
  22. 22.
    Laskin, J.; Futrell, J. H.; Chu, I. K. Is Dissociation of Peptide Radical Cations an Ergodic Process? J. Am. Chem. Soc. 2007, 129, 9598–9599.CrossRefGoogle Scholar
  23. 23.
    Zhang, L.; Reilly, J. P. Radical-Driven Dissociation of Odd-Electron Peptide Radical Ions Produced in 157 nm Photodissociation. J. Am. Soc. Mass Spectrom. 2009, 20, 1378–1390.CrossRefGoogle Scholar
  24. 24.
    O’Connor, P. B.; Lin, C.; Cournoyer, J. J.; Pittman, J. L.; Belyayev, M.; Budnik, B. A. Long-Lived Electron Capture Dissociation Product Ions Experience Radical Migration Via Hydrogen Abstraction. J. Am. Soc. Mass Spectrom. 2006, 17, 576–585.CrossRefGoogle Scholar
  25. 25.
    Lin, C.; O’Connor, P. B.; Cournoyer, J. J. Use of a Double Resonance Electron Capture Dissociation Experiment to Probe Fragment Intermediate Lifetimes. J. Am. Soc. Mass Spectrom. 2006, 17, 1605–1615.CrossRefGoogle Scholar
  26. 26.
    Cooper, H. J.; Hudgins, R. R.; Hakansson, K.; Marshall, A. G. Characterization of Amino Acid Side-Chain losses in Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 241–249.CrossRefGoogle Scholar
  27. 27.
    Cooper, H. J.; Hudgins, R. R.; Hakansson, K.; Marshall, A. G. Secondary Fragmentation of Linear Peptides in Electron Capture Dissociation. Int. J. Mass Spectrom. 2003, 228, 723–728.CrossRefGoogle Scholar
  28. 28.
    Fung, Y. M. E.; Chan, T. W. D. Experimental and Theoretical Investigations of the Loss of Amino Acid Side Chains in Electron Capture Dissociation of Model Peptides. J. Am. Soc. Mass Spectrom. 2005, 16, 1523–1535.CrossRefGoogle Scholar
  29. 29.
    Savitski, M. M.; Nielsen, M. L.; Zubarev, R. A. Side-Chain Losses in Electron Capture Dissociation to Improve Peptide Identification. Anal. Chem. 2007, 79, 2296–2302.CrossRefGoogle Scholar
  30. 30.
    Falth, M.; Savitski, M. M.; Nielsen, M. L.; Kjeldsen, F.; Andren, P. E.; Zubarev, R. A. Analytical Utility of Small Neutral Losses from Reduced Species in Electron Capture Dissociation Studied Using SwedECD Database. Anal. Chem. 2008, 80, 8089–8094.CrossRefGoogle Scholar
  31. 31.
    Kjeldsen, F.; Zubarev, R. Secondary Losses Via γ-Lactam Formation in Hot Electron Capture Dissociation: A Missing Link to Complete De Novo Sequencing of Proteins? J. Am. Chem. Soc. 2003, 125, 6628–6629.CrossRefGoogle Scholar
  32. 32.
    Haselmann, K. F.; Budnik, B. A.; Kjeldsen, F.; Polfer, N. C.; Zubarev, R. A. Can the (M·-X) Region in Electron Capture Dissociation Provide Reliable Information on Amino Acid Composition of Polypeptides? Eur. J. Mass Spectrom. 2002, 8, 461–469.CrossRefGoogle Scholar
  33. 33.
    Cooper, H. J.; Hakansson, K.; Marshall, A. G.; Hudgins, R. R.; Haselmann, K. F.; Kjeldsen, F.; Budnik, B. A.; Polfer, N. C.; Zubarev, R. A. Letter: The Diagnostic Value of Amino Acid Side-Chain Losses in Electron Capture Dissociation of Polypeptides. Comment on: “Can the (M·-X) Region in Electron Capture Dissociation Provide Reliable Information on Amino Acid Composition of Polypeptides?” Eur. J. Mass Spectrom. 2002, 8, 461–469. Eur. J. Mass Spectrom. 2003, 9, 221–222.CrossRefGoogle Scholar
  34. 34.
    Cheng, C.; Gross, M. L. Applications and Mechanisms of Charge-Remote Fragmentation. Mass Spectrom. Rev. 2000, 19, 398–420.CrossRefGoogle Scholar
  35. 35.
    Gross, M. L. Charge-Remote Fragmentation: An Account of Research on Mechanisms and Applications. Int. J. Mass Spectrom. 2000, 200, 611–624.CrossRefGoogle Scholar
  36. 36.
    Jensen, N. J.; Tomer, K. B.; Gross, M. L. Gas-Phase Ion Decompositions Occurring Remote to a Charge Site. J. Am. Chem. Soc. 1985, 107, 1863–1868.CrossRefGoogle Scholar
  37. 37.
    Adams, J.; Gross, M. L. Energy Requirements for Remote Charge Site Ion Decompositions and Structural Information from Collisional Activation of Alkali-Metal Cationized Fatty Alcohols. J. Am. Chem. Soc. 1986, 108, 6915–6921.CrossRefGoogle Scholar
  38. 38.
    Adams, J.; Gross, M. L. Charge-Remote Fragmentations of Closed-Shell Ions—a Thermolytic Analogy. J. Am. Chem. Soc. 1989, 111, 435–440.CrossRefGoogle Scholar
  39. 39.
    Gross, M. L. Charge-Remote Fragmentations—Method, Mechanism, and Applications. Int. J. Mass Spectrom. Ion Process. 1992, 118, 137–165.CrossRefGoogle Scholar
  40. 40.
    Han, H. L.; Xia, Y.; McLuckey, S. A. Ion Trap Collisional Activation of c and z· Ions Formed Via Gas-Phase Ion/Ion Electron Transfer Dissociation. J. Proteome Res. 2007, 6, 3062–3069.CrossRefGoogle Scholar
  41. 41.
    Leymarie, N.; Costello, C. E.; O’Connor, P. B. Electron Capture Dissociation Initiates a Free Radical Reaction Cascade. J. Am. Chem. Soc. 2003, 125, 8949–8958.CrossRefGoogle Scholar
  42. 42.
    Jebanathirajah, J. A.; Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Kaur, P.; Rape, M.; Kirschner, M.; Costello, C. E.; O’Connor, P. B. Characterization of a New qQq-FTICR Mass Spectrometer for Post-Translational Modification Analysis and Top-Down Tandem Mass Spectrometry of Whole Proteins. J. Am. Soc. Mass Spectrom. 2005, 16, 1985–1999.CrossRefGoogle Scholar
  43. 43.
    O’Connor, P. B.; Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Cournoyer, J. C.; Jebanathirajah, J.; Lin, C.; Moyer, S.; Zhao, C. A New Hybrid Electrospray Fourier Transform Mass Spectrometer: Design and Performance Characteristics. Rapid Commun. Mass Spectrom. 2006, 20, 259–266.CrossRefGoogle Scholar
  44. 44.
    Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E. P.; Coon, J. J. Supplemental Activation Method for High-Efficiency Electron-Transfer Dissociation of Doubly Protonated Peptide Precursors. Anal. Chem. 2007, 79, 477–485.CrossRefGoogle Scholar
  45. 45.
    Cooper, H. J. Investigation of the Presence of b Ions in Electron Capture Dissociation Mass Spectra. J. Am. Soc. Mass Spectrom. 2005, 16, 1932–1940.CrossRefGoogle Scholar
  46. 46.
    Liu, H. C.; Hakansson, K. Abundant b-Type Ions Produced in Electron Capture Dissociation of Peptides Without Basic Amino Acid Residues. J. Am. Soc. Mass Spectrom. 2007, 18, 2007–2013.CrossRefGoogle Scholar
  47. 47.
    Li, X.; Cournoyer, J. J.; Lin, C.; O’Connor, P. B. The Effect of Fixed Charge Modifications on Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2008, 19, 1514–1526.CrossRefGoogle Scholar
  48. 48.
    Belyayev, M. A.; Cournoyer, J. J.; Lin, C.; O’Connor, P. B. The Effect of Radical Trap Moieties on Electron Capture Dissociation Spectra of Substance P. J. Am. Soc. Mass Spectrom. 2006, 17, 1428–1436.CrossRefGoogle Scholar
  49. 49.
    Kjeldsen, F.; Haselmann, K. F.; Budnik, B. A.; Jensen, F.; Zubarev, R. A. Dissociative Capture of Hot (3–13 eV) Electrons by Polypeptide Polycations: An Efficient Process Accompanied by Secondary Fragmentation. Chem. Phys. Lett. 2002, 356, 201–206.CrossRefGoogle Scholar
  50. 50.
    Cournoyer, J. J.; Pittman, J. L.; Ivleva, V. B.; Fallows, E.; Waskell, L.; Costello, C. E.; O’Connor, P. B. Deamidation: Differentiation of Aspartyl from Isoaspartyl Products in Peptides by Electron Capture Dissociation. Protein Sci. 2005, 14, 452–463.CrossRefGoogle Scholar
  51. 51.
    Cournoyer, J. J.; Lin, C.; O’Connor, P. B. Detecting Deamidation Products in Proteins by Electron Capture Dissociation. Anal. Chem. 2006, 78, 1264–1271.CrossRefGoogle Scholar
  52. 52.
    Cournoyer, J. J.; Lin, C.; Bowman, M. J.; O’Connor, P. B. Quantitating the Relative Abundance of Isoaspartyl Residues in Deamidated Proteins by Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2007, 18, 48–56.CrossRefGoogle Scholar
  53. 53.
    Li, X.; Cournoyer, J. J.; Lin, C.; O’Connor, P. B. Use of O-18 Labels to Monitor Deamidation During Protein and Peptide Sample Processing. J. Am. Soc. Mass Spectrom. 2008, 19, 855–864.CrossRefGoogle Scholar
  54. 54.
    O’Connor, P. B.; Cournoyer, J. J.; Pitteri, S. J.; Chrisman, P. A.; McLuckey, S. A. Differentiation of Aspartic and Isoaspartic Acids Using Electron Transfer Dissociation. J. Am. Soc. Mass Spectrom. 2006, 17, 15–19.CrossRefGoogle Scholar
  55. 55.
    Kjeldsen, F.; Haselmann, K. F.; Sorensen, E. S.; Zubarev, R. A. Distinguishing of Ile/Leu Amino Acid Residues in the PP3 Protein by (Hot) Electron Capture Dissociation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2003, 75, 1267–1274.CrossRefGoogle Scholar
  56. 56.
    Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. Hydrogen Rearrangement to and from Radical z Fragments in Electron Capture Dissociation of Peptides. J. Am. Soc. Mass Spectrom. 2007, 18, 113–120.CrossRefGoogle Scholar
  57. 57.
    Lin, C.; Cournoyer, J. C.; O’Connor, P. B. Probing the Gas Phase Folding Kinetics of Peptide Ions by IR Activated DR-ECD. J. Am. Soc. Mass Spectrom. 2008, 19, 780–789.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Xiaojuan Li
    • 1
  • Cheng Lin
    • 1
  • Liang Han
    • 1
    • 2
  • Catherine E. Costello
    • 1
  • Peter B. O’Connor
    • 1
    • 3
  1. 1.Mass Spectrometry Resource, Department of BiochemistryBoston University School of MedicineBostonUSA
  2. 2.Department of ChemistryBoston UniversityBostonUSA
  3. 3.Department of ChemistryUniversity of WarwickCoventryUK

Personalised recommendations