Skip to main content

Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization

Abstract

Saturated nonfunctionalized hydrocarbons can be oxidized in situ by initiating an electrical discharge during desorption electrospray ionization (DESI) to generate the corresponding alchohols and ketones. This form of reactive DESI experiment can be utilized as an in situ derivatization method for rapid and direct analysis of alkanes at atmospheric pressure without sample preparation. Betaine aldehyde was incorporated into the DESI spray solution to improve the sensitivity of detecting the long-chain alcohol oxidation products. The limit of detection for alkanes (C15H32 to C30H62) from pure samples is ∼20 ng. Multiple oxidations and dehydrogenations occurred during the DESI discharge, but no hydrocarbon fragmentation was observed, even for highly branched squalane. Using exact mass measurements, the technique was successfully implemented for analysis of petroleum distillates containing saturated hydrocarbons.

References

  1. Crawford, K. E.; Campbell, J. L.; Fiddler, M. N.; Duan, P.; Qian, K.; Gorbaty, M. L.; Kenttamaa, H. I. Laser-Induced Acoustic Desorption/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Petroleum Distillate Analysis. Anal. Chem. 2005, 77, 7916–7923.

    CAS  Article  Google Scholar 

  2. Liang, Z.; Hsu, C. S. Molecular Speciation of Saturates by On-Line Liquid Chromatography-Field Ionization Mass Spectrometry. Energy Fuels. 1998, 12, 637–643.

    CAS  Article  Google Scholar 

  3. Gross, J. H.; Vékey, K.; Dallos, A. Field Desorption Mass Spectrometry of Large Multiply Branched Saturated Hydrocarbons. J. Mass Spectrom. 2001, 36, 522–528.

    CAS  Article  Google Scholar 

  4. Purcell, J. M.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Complex Mixture Analysis. Anal. Chem. 2006, 78, 5906–5912.

    CAS  Article  Google Scholar 

  5. Duan, P. G.; Fu, M. K.; Pinkston, D. S.; Habicht, S. C.; Kenttamaa, H. I. Gas-Phase Reactions of ClMn(H2O)+ with Polar and Nonpolar Hydrocarbons in a Mass Spectrometer. JACS. 2007, 129, 9266–9267.

    CAS  Article  Google Scholar 

  6. Nefliu, M.; Smith, J. N.; Venter, A.; Cooks, R. G. Internal Energy Distributions in Desorption Electrospray Ionization (DESI). J. Am. Soc. Mass Spectrom. 2008, 19, 420–427.

    CAS  Article  Google Scholar 

  7. Benassi, M.; Wu, C.; Nefliu, M.; Ifa, D. R.; Volný, M.; Cooks, R. G. Redox Transformations in Desorption Electrospray Ionization. Int. J. Mass Spectrom. 2009, 280, 235–240.

    CAS  Article  Google Scholar 

  8. Pasilis, S. P.; Kertesz, V.; Van Berkel, G. J. Unexpected Analyte Oxidation During Desorption Electrospray Ionization-Mass Spectrometry. Anal. Chem. 2008, 80, 1208–1214.

    CAS  Article  Google Scholar 

  9. Chen, M. L.; Cook, K. D. Oxidation Artifacts in the Electrospray Mass Spectrometry of a β Peptide. Anal. Chem. 2007, 79, 2031–2036.

    CAS  Article  Google Scholar 

  10. Boys, B. L.; Kuprowski, M. C.; Noel, J. J.; Konermann, L. Protein Oxidative Modifications During Electrospray Ionization: Solution Phase Electrochemistry or Corona Discharge-Induced Radical Attack? Anal. Chem. 2009, 81, 4027–4034.

    CAS  Article  Google Scholar 

  11. Wong, J. W. H.; Maleknia, S. D.; Downard, K. M. Study of the Ribonuclease-S-Protein-Peptide Complex Using a Radical Probe and Electrospray Ionization Mass Spectrometry. Anal. Chem. 2003, 75, 1557–1563.

    CAS  Article  Google Scholar 

  12. Wu, C.; Ifa, D. R.; Manicke, N. E.; Cooks, R. G. Rapid, Direct Analysis of Cholesterol by Charge Labeling in Reactive Desorption Electrospray Ionization. Anal. Chem. 2009, 81, 7618–7624.

    CAS  Article  Google Scholar 

  13. Nyadong, L.; Hohenstein, E. G.; Galhena, A.; Lane, A. L.; Kubanek, J.; Sherrill, C. D.; Fernandez, F. M. Reactive Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) of Natural Products of a Marine Alga. Anal. Bioanal. Chem. 2009, 394, 245–254.

    CAS  Article  Google Scholar 

  14. Qian, K. N.; Dechert, G. J. Recent Advances in Petroleum Characterization by GC Field Ionization Time-of-Flight High-Resolution Mass Spectrometry. Anal. Chem. 2002, 74, 3977–3983.

    CAS  Article  Google Scholar 

  15. Morand, K.; Talbo, G.; Mann, M. Oxidation of Peptides During Electrospray Ionization. Rapid Commun. Mass Spectrom. 1993, 7, 738–743.

    CAS  Article  Google Scholar 

  16. Klesper, G.; Rollgen, F. W. Field-Induced Ion Chemistry Leading to the Formation of (M − 2nH)+• and (2M − 2mH)+• Ions in Field Desorption Mass Spectrometry of Saturated Hydrocarbons. J. Mass Spectrom. 1996, 31, 383–388.

    CAS  Article  Google Scholar 

  17. Ascenzi, D.; Franceschi, P.; Guella, G.; Tosi, P. Phenol Production in Benzene/Air Plasmas at Atmospheric Pressure: Role of Radical and Ionic Routes. J. Phys. Chem. A. 2006, 110, 7841–7847.

    CAS  Article  Google Scholar 

  18. Xu, G.; Chance, M. R. Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chem. Rev. 2007, 107, 3514–3543.

    CAS  Article  Google Scholar 

  19. Kudryashov, S. V.; Shchegoleva, G. S.; Sirotkina, E. E.; Ryabov, A. Y. Oxidation of Hydrocarbons in a Barrier Discharge Reactor. High Energ. Chem. 2000, 34, 112–115.

    CAS  Article  Google Scholar 

  20. Marshall, A. G.; Rodgers, R. P. Petroleomics: Chemistry of the Underworld. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18090–18095.

    CAS  Article  Google Scholar 

  21. Huang, G.; Chen, H.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Rapid Screening of Anabolic Steroids in Urine by Reactive Desorption Electrospray Ionization. Anal. Chem. 2007, 79, 8327–8332.

    CAS  Article  Google Scholar 

  22. Nyadong, L.; Late, S.; Green, M. D.; Banga, A.; Fernandez, F. M. Direct Quantitation of Active Ingredients in Solid Artesunate Antimalarials by Noncovalent Complex Forming Reactive Desorption Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 380–388.

    CAS  Article  Google Scholar 

  23. Vanberkel, G. J.; McLuckey, S. A.; Glish, G. L. Electrochemical Origin of Radical Cations Observed in Electrospray Ionization Mass Spectra. Anal. Chem. 1992, 64, 1586–1593.

    CAS  Article  Google Scholar 

  24. Zhang, J.; Frankevich, V.; Knochenmuss, R.; Friess, S. D.; Zenobi, R. Reduction of Cu(II) in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 42–50.

    CAS  Article  Google Scholar 

  25. Pelzer, G.; Depauw, E.; Dung, D. V.; Marien, J. Oxidation-Reduction Processes Occurring in Secondary Ion Mass Spectrometry and Fast Atom Bombardment of Glycerol Solutions. J. Phys. Chem. 1984, 88, 5065–5068.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Graham Cooks.

Additional information

Published online November 13, 2009

Electronic supplementary material

Supplementary material, approximately 4967 KB.

Supplementary material, approximately 667 KB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, C., Qian, K., Nefliu, M. et al. Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization. J Am Soc Mass Spectrom 21, 261–267 (2010). https://doi.org/10.1016/j.jasms.2009.10.006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2009.10.006

Keywords

  • Alkane
  • Betaine Aldehyde
  • Desorption Electrospray Ionization
  • Reactive DESI
  • Petroleum Distillate