Skip to main content

Biases in ion transmission through an electrospray ionization-mass spectrometry capillary inlet

Abstract

A heated capillary inlet for an electrospray ionization mass spectrometry (ESI-MS) interface was compared with shorter versions of the inlet to determine the effects on transmission and ionization efficiencies for low-flow (nano) electrosprays. Five different inlet lengths were studied, ranging from 6.4 to 1.3 cm. As expected, the electrospray current transmission efficiency increased with decreasing capillary length due to reduced losses to the inside walls of the capillary. This increase in transmission efficiency with shorter inlets was coupled with reduced desolvation of electrosprayed droplets. Surprisingly, as the inlet length was decreased, some analytes showed little or no increase in sensitivity, while others showed as much as a 15-fold gain. The variation was shown to be at least partially correlated with analyte mobilities, with the largest gains observed for higher mobility species, but also affected by solution conductivity, flow rate, and inlet temperature. Strategies for maximizing sensitivity while minimizing biases in ion transmission through the heated capillary interface are proposed.

References

  1. El-Faramawy, A.; Siu, K. W. M.; Thomson, B. A. Efficiency of Nano-Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2005, 16, 1702–1707.

    CAS  Article  Google Scholar 

  2. Schmidt, A.; Karas, M.; Dulcks, T. Effect of Different Solution Flow Rates on Analyte Ion Signals in Nano-ESI MS, or: When Does ESI Turn into Nano-ESI? J. Am. Soc. Mass Spectrom. 2003, 14, 492–500.

    CAS  Article  Google Scholar 

  3. Covey, T. R.; Thomson, B. A.; Schneider, B. B. Atmospheric Pressure Ion Sources. Mass Spectrom. Rev. 2009, DOI 10.1002/mas. 20246.

  4. Kebarle, P.; Verberk, U. H. Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrom. Rev. 2009, DOI 10.1002/mas. 20247.

  5. Gale, D. C.; Smith, R. D. Small Volume and Low Flow-Rate Electrospray Ionization Mass Spectrometry of Aqueous Samples. Rapid Commun. Mass Spectrom. 1993, 7, 1017–1021.

    CAS  Article  Google Scholar 

  6. Wilm, M. S.; Mann, M. Electrospray and Taylor-Cone Theory, Dole’s Beam of Macromolecules at Last? Int. J. Mass Spectrom. Ion Processes 1994, 136, 167–180.

    CAS  Article  Google Scholar 

  7. Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.

    CAS  Article  Google Scholar 

  8. Fernandez de la Mora, J.; Loscertales, I. The Current Emitted by Highly Conducting Taylor Cones. J. Fluid Mech 1994, 260, 155–184.

    CAS  Article  Google Scholar 

  9. Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D. Ionization and Transmission Efficiency in an Electrospray Ionization-Mass Spectrometry Interface. J. Am. Soc. Mass Spectrom. 2007, 18, 1582–1590.

    CAS  Article  Google Scholar 

  10. Emmett, M. R.; White, F. M.; Hendrickson, C. L.; Shi, S. D. -H.; Marshall, A. G. Application of Micro-Electrospray Liquid Chromatography Techniques to FT-ICR MS to Enable High-Sensitivity Biological Analysis. J. Am. Soc. Mass Spectrom. 1998, 9, 333–340.

    CAS  Article  Google Scholar 

  11. Shen, Y.; Tolic, N.; Masselon, C.; Pasa-Tolic, L.; Camp, D. G.; Hixson, K. K.; Zhao, R.; Anderson, G. A.; Smith, R. D. Ultrasensitive Proteomics Using High-Efficiency On-Line Micro-SPE-NanoLC-NanoESI MS and MS/MS. Anal. Chem. 2004, 76, 144–154.

    CAS  Article  Google Scholar 

  12. Shen, Y.; Tolic, N.; Masselon, C.; Pasa-Tolic, L.; Camp, D. G.; Lipton, M. S.; Anderson, G. A.; Smith, R. D. Nanoscale Proteomics. Anal. Bioanal. Chem. 2004, 378, 1037–1045.

    CAS  Article  Google Scholar 

  13. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; John Wiley and Sons, Inc.: New York, 1997; 107–136.

    Google Scholar 

  14. Chowdhury, S. K.; Katta, V.; Chait, B. T. An Electrospray-Ionization Mass Spectrometer with New Features. Rapid Commun. Mass Spectrom. 1990, 4, 81–87.

    CAS  Article  Google Scholar 

  15. Busman, M.; Sunner, J.; Vogel, C. R. Space-Charge-Dominated Mass-Spectrometry Ion Sources—Modeling and Sensitivity. J. Am. Soc. Mass Spectrom. 1991, 2, 1–10.

    CAS  Article  Google Scholar 

  16. Lin, B. W.; Sunner, J. Ion Transport by Viscous Gas Flow Through Capillaries. J. Am. Soc. Mass Spectrom. 1994, 5, 873–885.

    CAS  Article  Google Scholar 

  17. Page, J. S.; Tolmachev, A. V.; Tang, K.; Smith, R. D. Theoretical and Experimental Evaluation of the Low m/z Transmission of an Electrodynamic Ion Funnel. J. Am. Soc. Mass Spectrom. 2006, 17, 586–592.

    CAS  Article  Google Scholar 

  18. Kelly, R. T.; Page, J. S.; Luo, Q.; Moore, R. J.; Orton, D. J.; Tang, K.; Smith, R. D. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 7796–7801.

    CAS  Article  Google Scholar 

  19. Tomlinson, E.; Jefferies, T. M.; Riley, C. M. Ion-Pair High-Performance Liquid Chromatography. J. Chromatogr. 1978, 159, 315–358.

    CAS  Article  Google Scholar 

  20. Marginean, I.; Kelly, R. T.; Prior, D. C.; LaMarche, B. L.; Tang, K.; Smith, R. D. Analytical Characterization of the Electrospray Ion Source in the Nanoflow Regime. Anal. Chem. 2008, 80, 6573–6579.

    CAS  Article  Google Scholar 

  21. Wutz, M.; Adam, H.; Walcher, W. Theory and Practice of Vacuum Technology; Vieweg: Braunschweig, 1989; p. 96.

    Google Scholar 

  22. Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988; pp 77–78.

    Google Scholar 

  23. Baker, E. S.; Clowers, B. H.; Li, F. M.; Tang, K.; Tolmachev, A. V.; Prior, D. C.; Belov, M. E.; Smith, R. D. Ion Mobility Spectrometry-Mass Spectrometry Performance Using Electrodynamic Ion Funnels and Elevated Drift Gas Pressures. J. Am. Soc. Mass Spectrom. 2007, 18, 1176–1187.

    CAS  Article  Google Scholar 

  24. Henderson, S. C.; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. ESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis of Biomolecular Mixtures. Anal. Chem. 1999, 71, 291–301.

    CAS  Article  Google Scholar 

  25. Batchelor, G. K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, 1967; p. 233.

    Google Scholar 

  26. Yang, F.; Jaitly, N.; Jayachandran, H.; Luo, Q.; Monroe, M. E.; Du, X.; Gritsenko, M. A.; Zhang, R.; Anderson, D. J.; Purvine, S. O.; Adkins, J. N.; Moore, R. J.; Mottaz, H. M.; Ding, S. -J.; Lipton, M. S.; Camp, D. G.; Udseth, H. R.; Smith, R. D.; Rossie, S. Applying a Targeted Label-Free Approach Using LC MS AMT Tags to Evaluate Changes in Protein Phosphorylation Following Phosphatase Inhibition. J. Proteome Res. 2007, 6, 4489–4497.

    CAS  Article  Google Scholar 

  27. Guo, X.; Bruins, A. P.; Covey, T. R. Method to Reduce Chemical Background Interference in Atmospheric Pressure Ionization Liquid Chromatography Mass Spectrometry Using Exclusive Reactions with the Chemical Reagent Dimethyl Disulfide. Anal. Chem. 2007, 79, 4013–4021.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Smith.

Additional information

Published online September 2, 2009

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Page, J.S., Marginean, I., Baker, E.S. et al. Biases in ion transmission through an electrospray ionization-mass spectrometry capillary inlet. J Am Soc Mass Spectrom 20, 2265–2272 (2009). https://doi.org/10.1016/j.jasms.2009.08.018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2009.08.018

Keywords

  • Enhancement Factor
  • Transmission Efficiency
  • Ionization Efficiency
  • Charged Droplet
  • Capillary Inlet