Differential protein expression analysis using stable isotope labeling and PQD linear ion trap MS technology

Abstract

An isotope tags for relative and absolute quantitation (iTRAQ)-based reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) method was developed for differential protein expression profiling in complex cellular extracts. The estrogen positive MCF-7 cell line, cultured in the presence of 17β-estradiol (E2) and tamoxifen (Tam), was used as a model system. MS analysis was performed with a linear trap quadrupole (LTQ) instrument operated by using pulsed Q dissociation (PQD) detection. Optimization experiments were conducted to maximize the iTRAQ labeling efficiency and the number of quantified proteins. MS data filtering criteria were chosen to result in a false positive identification rate of <4%. The reproducibility of protein identifications was ∼60%–67% between duplicate, and ∼50% among triplicate LC-MS/MS runs, respectively. The run-to-run reproducibility, in terms of relative standard deviations (RSD) of global mean iTRAQ ratios, was better than 10%. The quantitation accuracy improved with the number of peptides used for protein identification. From a total of 530 identified proteins (P < 0.001) in the E2/Tam treated MCF-7 cells, a list of 255 proteins (quantified by at least two peptides) was generated for differential expression analysis. A method was developed for the selection, normalization, and statistical evaluation of such datasets. An approximate ∼2-fold change in protein expression levels was necessary for a protein to be selected as a biomarker candidate. According to this data processing strategy, ∼16 proteins involved in biological processes such as apoptosis, RNA processing/metabolism, DNA replication/transcription/repair, cell proliferation and metastasis, were found to be up- or down-regulated.

References

  1. 1.

    Choe, L. H.; Aggarwal, K.; Franck, Z.; Lee, K. H. A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 2005, 26, 2437–2449.

    CAS  Article  Google Scholar 

  2. 2.

    Shi, Y.; Xiang, R.; Horváth, C.; Wilkins, J. A. Quantitative analysis of membrane proteins from breast cancer cell lines BT474 and MCF7 using multistep solid phase mass tagging and 2D LC/MS. J. Proteome Res. 2005, 4, 1427–1433.

    CAS  Article  Google Scholar 

  3. 3.

    Xiang, R.; Shi, Y.; Dillon, D. A.; Negin, B.; Horváth, C.; Wilkins, J. A. Analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. J. Proteome Res. 2004, 3, 1278–1283.

    CAS  Article  Google Scholar 

  4. 4.

    Lill, J. Proteomic tools for quantitation by mass spectrometry. Mass Spectrom. Rev. 2003, 22, 182–194.

    CAS  Article  Google Scholar 

  5. 5.

    Wu, W. W.; Wang, G.; Baek, S. J.; Shen, R. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D Gel- or LC-MALDI TOF/TOF. J. Proteome Res. 2006, 5, 651–658.

    CAS  Article  Google Scholar 

  6. 6.

    Melanson, J. E.; Avery, S. L.; Pinto, D. M. High-coverage quantitative proteomics using amine-specific isotopic labeling. Proteomics 2006, 6, 4466–44474.

    CAS  Article  Google Scholar 

  7. 7.

    Julka, S.; Regnier, F. Quantification in proteomics through stable isotope coding: A review. J. Proteome Res. 2004, 3, 350–363.

    CAS  Article  Google Scholar 

  8. 8.

    Patwardham, A. J.; Strittmatter, E. F.; Camp, D. G.; Smith, R. D.; Pallavicini, M. G. Quantitative proteome analysis of breast cancer cell lines using 18 O-labeling and an accurate mass and time tag strategy. Proteomics 2006, 6, 2903–2915.

    Article  Google Scholar 

  9. 9.

    Schneider, L. V.; Hall, M. P. Stable isotope methods for high-precision proteomics. Drug Discov. Today Targets 2005, 5(10), 353–363.

    Article  Google Scholar 

  10. 10.

    Thiede, B.; Kretschmer, A.; Rudel, T. Quantitative proteome analysis of CD95 (Fas/Apo-1)-induced apoptosis by stable isotope labeling with amino acids in cell culture, 2-DE, and MALDI-MS. Proteomics 2006, 6, 614–622.

    Article  Google Scholar 

  11. 11.

    Ong, S.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandy, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002, 1, 376–385.

    CAS  Article  Google Scholar 

  12. 12.

    Everley, P. A.; Krijgsveld, J.; Zetter, B. R.; Gygi, S. P. Quantitative cancer proteomics: Stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteom. 2004, 3, 729–735.

    CAS  Article  Google Scholar 

  13. 13.

    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, 994–999.

    CAS  Article  Google Scholar 

  14. 14.

    Wienkoop, S.; Weckewerth, W. Relative and absolute quantitative shotgun proteomics: targeting low-abundance proteins in Arabidopsis thaliana. J. Experimental Botany 2006, 57(7), 1529–1535.

    CAS  Article  Google Scholar 

  15. 15.

    Aggarwal, K.; Choe, L. H.; Lee, K. H. Shotgun proteomics using the iTRAQ isobaric tags. Briefings Funct. Genom. Proteom. 2006, 5(2), 112–120.

    CAS  Article  Google Scholar 

  16. 16.

    Zieske, L. R. A perspective on the use of iTRAQTM reagent technology for protein complex and profiling studies. J. Exp. Botany 2006, 57(7), 1501–1508.

    CAS  Article  Google Scholar 

  17. 17.

    Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350.

    CAS  Article  Google Scholar 

  18. 18.

    Petti, F.; Thelemann, A.; Kahler, J.; McCormack, S.; Castaldo, L.; Hunt, T.; Nuwaysir, L.; Zeiske, L.; Haack, H.; Sullivan, L.; Garton, A.; Haley, J. D. Temporal quantitation of mutant kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930. Mol. Cancer Ther. 2005, 4, 1186–1197.

    CAS  Article  Google Scholar 

  19. 19.

    Evans, F. F.; Raftery, M. J.; Egan, S.; Kjelleberg, S. Profiling the secretome of the marine bacterium Pseudoalteromonas tunicata using amine-specific isobaric tagging (iTRAQ). J. Proteome Res. 2007, 6, 967–975.

    CAS  Article  Google Scholar 

  20. 20.

    Glückmann, M.; Fella, K.; Waidelich, D.; Merkel, D.; Kruft, V.; Kramer, P.; Walter, Y.; Hellmann, J.; Karas, M.; Kröger, M. Prevalidation of potential protein biomarkers in toxicology using iTRAQ reagent technology. Proteomics 2007, 7, 1564–1574.

    Article  Google Scholar 

  21. 21.

    Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 2004, 3, 1154–1169.

    CAS  Article  Google Scholar 

  22. 22.

    Dean, A. R.; Overall, C. M. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol. Cell. Proteom. 2007, 6, 611–623.

    CAS  Article  Google Scholar 

  23. 23.

    Stensjö, K.; Ow, S. Y.; Barrios-Llerena, M. E.; Lindblad, P.; Wright, P. C. An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions. J. Proteome Res. 2007, 6, 621–635.

    Article  Google Scholar 

  24. 24.

    Cong, Y.; Fan, E.; Wang, E. Simultaneous proteomic profiling of four different growth states of human fibroblasts, using amine-reactive isobaric tagging reagents and tandem mass spectrometry. Mech. Ageing Dev. 2006, 127, 332–343.

    CAS  Article  Google Scholar 

  25. 25.

    Siepen, J. A.; Swainston, N.; Jones, A. R.; Hart, S. R.; Hermjakob, H.; Jones, P.; Hubbard, S. J. An informatic pipeline for the data capture and submission of quantitative proteomic data using iTRAQ. Proteome Sci. 2007, 5(4), 1–9.

    Google Scholar 

  26. 26.

    DeSouza, L.; Diehl, G.; Rodrigues, M. J.; Guo, J.; Romaschin, A. D.; Colgan, T. J.; Siu, K. W. M. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 2005, 4, 377–386.

    CAS  Article  Google Scholar 

  27. 27.

    Lund, T. C.; Anderson, L. B.; McCullar, V.; Higgins, L.; Yun, G. H.; Grzywacz, B.; Verneris, M. R.; Miller, J. S. iTRAQ is a useful method to screen for membrane-bound proteins differentially expressed in human natural killer cell types. J. Proteome Res. 2007, 6, 644–653.

    CAS  Article  Google Scholar 

  28. 28.

    Liu, T.; Donahue, K. C.; Hu, J.; Kurnellas, M. P.; Grant, J. E.; Li, H.; Elkabes, S. Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord. J. Proteome Res. 2007, 6, 2565–2575.

    CAS  Article  Google Scholar 

  29. 29.

    Keshamouni, V. G.; Michailidis, G.; Grasso, C. S.; Anthwal, S.; Strahler, J. R.; Walker, A.; Arenberg, D. A.; Reddy, R. C.; Akulapalli, S.; Thannickal, V. J.; Standiford, T. J.; Andrews, P. C.; Omenn, G. S. Differentially protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res. 2006, 5, 1143–1154.

    CAS  Article  Google Scholar 

  30. 30.

    Chaerkady, R.; Harsha, H. C.; Nalli, A.; Gucek, M.; Vivekanandan, P.; Akhtar, J.; Cole, R. N.; Simmers, J.; Schulick, R. D.; Singh, S.; Torbenson, M.; Pandey, A.; Thuluvath, P. J. A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J. Proteome Res. 2008, 7, 4289–4298.

    CAS  Article  Google Scholar 

  31. 31.

    Meany, D. L.; Xie, H.; Thompson, L. V.; Arriaga, E. A.; Griffin, T. J. Identification of carbonylated proteins from enriched rat skeletal muscle mitochondria using affinity chromatography-stable isotope labeling and tandem mass spectrometry. Proteomics 2007, 7, 1150–1163.

    CAS  Article  Google Scholar 

  32. 32.

    Griffin, T. J.; Xie, H.; Bandhakavi, S.; Popko, J.; Mohan, A.; Carlis, J. V.; Higgins, L. iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J. Proteome Res. 2007, 6, 4200–4209.

    CAS  Article  Google Scholar 

  33. 33.

    Bantscheff, M.; Boesche, M.; Eberhard, D.; Matthieson, T.; Sweetman, G.; Kuster, B. Robust and sensitive iTRAQ quantitation on LTQ Orbitrap mass spectrometer. Mol. Cell. Proteom. 2008, 7(9), 1702–1713.

    CAS  Article  Google Scholar 

  34. 34.

    Venable, J. D.; Wohlschlegel, J. D.; McClatchy, D. B.; Park, S. K.; Yates, J. R. III. Relative quantitation of stable isotope labeled peptides using linear ion trap-Orbitrap hybrid mass spectrometer. Anal. Chem. 2007, 79, 3056–3064.

    CAS  Article  Google Scholar 

  35. 35.

    Sarvaiya, H. A.; Yoon, J. H.; Lazar, I. M. Proteome profile of the MCF7 cancer cell line: A mass spectrometric evaluation. Rapid Commun. Mass Spectrom. 2006, 20, 3039–3055.

    CAS  Article  Google Scholar 

  36. 36.

    ExPASy/SwissProt (http://www.expasy.orghttp://www.expasy.org/).

  37. 37.

    Malorni, L.; Cacace, G.; Cuccurullo, M.; Pocsfalvi, G.; Chambery, A.; Farina, A.; Di Maro, A.; Parente, A.; Antonio Malorni, A. Proteomic analysis of MCF-7 breast cancer cell line exposed to mitogenic concentration of 17β-estradiol. Proteomics 2006, 6, 5973–5982.

    CAS  Article  Google Scholar 

  38. 38.

    Zhao, J.; Zhu, K.; Lubman, D. M.; Miller, F. R.; Shekhar, M. P. V.; Gerard, B.; Barder, T. J. Proteomic analysis of estrogen response of premalignant human breast cells using a 2-D liquid separation/mass mapping technique. Proteomics 2006, 6, 3847–3861.

    CAS  Article  Google Scholar 

  39. 39.

    Huang, H.; Stasyk, T.; Morandell, S.; Dieplinger, H.; Falkensammer, G.; Griesmacher, A.; Mogg, M.; Schreiber, M.; Feuerstein, I.; Huck, C. W.; Stecher, G.; Bonn, G. K.; Huber, L. A. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 2006, 27 1741–1650.

    Google Scholar 

  40. 40.

    Brusic, V.; Marina, O.; Wu, C. J.; Reinherz, E. L. Proteome informatics for cancer research: From molecules to clinic. Proteomics 2007, 7, 976–991.

    CAS  Article  Google Scholar 

  41. 41.

    Minafra, I. P.; Cancemi, P.; Fontana, S.; Minafra, L.; Feo, S.; Becchi, M.; Freyria, A. M.; Minafra, S. Expanding the protein catalogue in the proteome reference map of human breast cancer cells. Proteomics 2006, 6, 2609–2625.

    Article  Google Scholar 

  42. 42.

    Kreunin, P.; Yoo, C.; Urquidi, V.; Lubman, D. M.; Goodison, S. Proteomic profiling identifies breast tumor metastasis-associated factors in an isogenic model. Proteomics 2007, 7, 299–312.

    CAS  Article  Google Scholar 

  43. 43.

    Kirmiz, C.; Li, B.; An, H. J.; Clowers, B. H.; Chew, H. K.; Lam, K. S.; Ferrige, A.; Alecio, R.; Borowsky, A. D.; Sulaimon, S.; Lebrilla, C. B.; Miyamoto, S. A serum glycomics approach to breast cancer biomarkers. Mol. Cell. Proteom. 2007, 6, 43–55.

    CAS  Article  Google Scholar 

  44. 44.

    Canelle, L.; Bousquet, J.; Pionneau, C.; Hardouin, J.; Kastylevsky, G. C.; Joubert-Caron, R.; Caron, M. A proteomic approach to investigate potential biomarkers directed against membrane-associated breast cancer proteins. Electrophoresis 2006, 27, 1609–1616.

    CAS  Article  Google Scholar 

  45. 45.

    Harwood, M. M.; Bleecker, J. V.; Rabinovitch, P. S.; Dovichi, N. J. Cell cycle dependent characterization of single MCF-7 breast cancer cell by 2-D CE. Electrophoresis 2007, 28, 932–937.

    CAS  Article  Google Scholar 

  46. 46.

    Chong, P. K.; Gan, C. S.; Pham, T. K.; Wright, P. C. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. J. Proteome Res. 2006, 5, 1232–1240.

    CAS  Article  Google Scholar 

  47. 47.

    Oda, Y.; Huang, K.; Cross, F. R.; Cowburn, D.; Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6591–6596.

    CAS  Article  Google Scholar 

  48. 48.

    Gan, C. S.; Chong, P. K.; Pham, T. K.; Wright, P. C. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J. Proteome Res. 2007, 6, 821–827.

    CAS  Article  Google Scholar 

  49. 49.

    Bolstad, B. M.; Irizarry, R. A.; Åstrand, M.; Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2), 185–193.

    CAS  Article  Google Scholar 

  50. 50.

    Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300.

    Google Scholar 

  51. 51.

    Furuya, Y.; Kohno, N.; Fujiwara, Y.; Saitoh, Y. Mechanisms of estrogen action on the proliferation of MCF-7 human breast cancer cells in an improved culture medium. Cancer Res. 1989, 49, 6670–6674.

    CAS  Google Scholar 

  52. 52.

    Darbre, P.; Yates, J.; Curtis, S.; King, R. J. B. Effect of estradiol on human breast cancer cells in culture. Cancer Res. 1983, 43, 349–354.

    CAS  Google Scholar 

  53. 53.

    Osborne, C. K.; Boldt, D. H.; Estrada, P. Human breast cancer cell cycle synchronization by estrogens and antiestrogens in culture. Cancer Res. 1984, 44, 1433–1439.

    CAS  Google Scholar 

  54. 54.

    Stackievicz, R.; Drucker, L.; Radnay, J.; Beyth, Y.; Yarkoni, S.; Cohen, I. Tamoxifen modulates apoptotic pathways in primary endometrial cell cultures. Clin. Cancer Res. 2001, 7, 415–420.

    CAS  Google Scholar 

  55. 55.

    Schnaper, H. W. Estrogen—it’s not just for reproduction anymore. Kidney Int. 1999, 55, 1577–1579.

    CAS  Article  Google Scholar 

  56. 56.

    Osborne, C. K.; Boldt, D. H.; Clark, G. M.; Trent, J. M. Effects of tamoxifen on human breast cancer cell cycle kinetics: Accumulation of cells in early G1 phase. Cancer Res. 1983, 43, 3583–3585.

    CAS  Google Scholar 

  57. 57.

    Rosati, A.; Ammirante, M.; Gentilella, A.; Basile, A.; Festa, M.; Pascale, M.; Marzullo, L.; Belisario, M. A.; Tosco, A.; Franceschelli, S.; Moltedo, O.; Pagliuca, G.; Lerose, R.; Turco, M. C. Apoptosis inhibition in cancer cells: A novel molecular pathway that involves BAG3 protein. Int. J. Biochem. Cell. Biol. 2007, 39, 1337–1342.

    CAS  Article  Google Scholar 

  58. 58.

    Makeyev, A. V.; Liebhaber, S. A. The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms. RNA 2002, 8, 265–278.

    CAS  Article  Google Scholar 

  59. 59.

    Leffers, H.; Dejgaard, K.; Celis, J. E. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur. J. Biochem. 1995, 230, 447–453.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iulia M. Lazar.

Additional information

Published online March 4, 2009

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Armenta, J.M., Hoeschele, I. & Lazar, I.M. Differential protein expression analysis using stable isotope labeling and PQD linear ion trap MS technology. J Am Soc Mass Spectrom 20, 1287–1302 (2009). https://doi.org/10.1016/j.jasms.2009.02.029

Download citation

Keywords

  • Tandem Mass Spectrum
  • Relative Standard Deviation
  • iTRAQ Reagent
  • iTRAQ Ratio
  • Linear Trap Quadrupole