Differential protein expression analysis using stable isotope labeling and PQD linear ion trap MS technology

  • Jenny M. Armenta
  • Ina Hoeschele
  • Iulia M. LazarEmail author


An isotope tags for relative and absolute quantitation (iTRAQ)-based reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) method was developed for differential protein expression profiling in complex cellular extracts. The estrogen positive MCF-7 cell line, cultured in the presence of 17β-estradiol (E2) and tamoxifen (Tam), was used as a model system. MS analysis was performed with a linear trap quadrupole (LTQ) instrument operated by using pulsed Q dissociation (PQD) detection. Optimization experiments were conducted to maximize the iTRAQ labeling efficiency and the number of quantified proteins. MS data filtering criteria were chosen to result in a false positive identification rate of <4%. The reproducibility of protein identifications was ∼60%–67% between duplicate, and ∼50% among triplicate LC-MS/MS runs, respectively. The run-to-run reproducibility, in terms of relative standard deviations (RSD) of global mean iTRAQ ratios, was better than 10%. The quantitation accuracy improved with the number of peptides used for protein identification. From a total of 530 identified proteins (P < 0.001) in the E2/Tam treated MCF-7 cells, a list of 255 proteins (quantified by at least two peptides) was generated for differential expression analysis. A method was developed for the selection, normalization, and statistical evaluation of such datasets. An approximate ∼2-fold change in protein expression levels was necessary for a protein to be selected as a biomarker candidate. According to this data processing strategy, ∼16 proteins involved in biological processes such as apoptosis, RNA processing/metabolism, DNA replication/transcription/repair, cell proliferation and metastasis, were found to be up- or down-regulated.


Tandem Mass Spectrum Relative Standard Deviation iTRAQ Reagent iTRAQ Ratio Linear Trap Quadrupole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_200701287_MOESM1_ESM.doc (106 kb)
Supplementary material, approximately 109 KB.


  1. 1.
    Choe, L. H.; Aggarwal, K.; Franck, Z.; Lee, K. H. A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 2005, 26, 2437–2449.CrossRefGoogle Scholar
  2. 2.
    Shi, Y.; Xiang, R.; Horváth, C.; Wilkins, J. A. Quantitative analysis of membrane proteins from breast cancer cell lines BT474 and MCF7 using multistep solid phase mass tagging and 2D LC/MS. J. Proteome Res. 2005, 4, 1427–1433.CrossRefGoogle Scholar
  3. 3.
    Xiang, R.; Shi, Y.; Dillon, D. A.; Negin, B.; Horváth, C.; Wilkins, J. A. Analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. J. Proteome Res. 2004, 3, 1278–1283.CrossRefGoogle Scholar
  4. 4.
    Lill, J. Proteomic tools for quantitation by mass spectrometry. Mass Spectrom. Rev. 2003, 22, 182–194.CrossRefGoogle Scholar
  5. 5.
    Wu, W. W.; Wang, G.; Baek, S. J.; Shen, R. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D Gel- or LC-MALDI TOF/TOF. J. Proteome Res. 2006, 5, 651–658.CrossRefGoogle Scholar
  6. 6.
    Melanson, J. E.; Avery, S. L.; Pinto, D. M. High-coverage quantitative proteomics using amine-specific isotopic labeling. Proteomics 2006, 6, 4466–44474.CrossRefGoogle Scholar
  7. 7.
    Julka, S.; Regnier, F. Quantification in proteomics through stable isotope coding: A review. J. Proteome Res. 2004, 3, 350–363.CrossRefGoogle Scholar
  8. 8.
    Patwardham, A. J.; Strittmatter, E. F.; Camp, D. G.; Smith, R. D.; Pallavicini, M. G. Quantitative proteome analysis of breast cancer cell lines using 18 O-labeling and an accurate mass and time tag strategy. Proteomics 2006, 6, 2903–2915.CrossRefGoogle Scholar
  9. 9.
    Schneider, L. V.; Hall, M. P. Stable isotope methods for high-precision proteomics. Drug Discov. Today Targets 2005, 5(10), 353–363.CrossRefGoogle Scholar
  10. 10.
    Thiede, B.; Kretschmer, A.; Rudel, T. Quantitative proteome analysis of CD95 (Fas/Apo-1)-induced apoptosis by stable isotope labeling with amino acids in cell culture, 2-DE, and MALDI-MS. Proteomics 2006, 6, 614–622.CrossRefGoogle Scholar
  11. 11.
    Ong, S.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandy, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002, 1, 376–385.CrossRefGoogle Scholar
  12. 12.
    Everley, P. A.; Krijgsveld, J.; Zetter, B. R.; Gygi, S. P. Quantitative cancer proteomics: Stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteom. 2004, 3, 729–735.CrossRefGoogle Scholar
  13. 13.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, 994–999.CrossRefGoogle Scholar
  14. 14.
    Wienkoop, S.; Weckewerth, W. Relative and absolute quantitative shotgun proteomics: targeting low-abundance proteins in Arabidopsis thaliana. J. Experimental Botany 2006, 57(7), 1529–1535.CrossRefGoogle Scholar
  15. 15.
    Aggarwal, K.; Choe, L. H.; Lee, K. H. Shotgun proteomics using the iTRAQ isobaric tags. Briefings Funct. Genom. Proteom. 2006, 5(2), 112–120.CrossRefGoogle Scholar
  16. 16.
    Zieske, L. R. A perspective on the use of iTRAQTM reagent technology for protein complex and profiling studies. J. Exp. Botany 2006, 57(7), 1501–1508.CrossRefGoogle Scholar
  17. 17.
    Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350.CrossRefGoogle Scholar
  18. 18.
    Petti, F.; Thelemann, A.; Kahler, J.; McCormack, S.; Castaldo, L.; Hunt, T.; Nuwaysir, L.; Zeiske, L.; Haack, H.; Sullivan, L.; Garton, A.; Haley, J. D. Temporal quantitation of mutant kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930. Mol. Cancer Ther. 2005, 4, 1186–1197.CrossRefGoogle Scholar
  19. 19.
    Evans, F. F.; Raftery, M. J.; Egan, S.; Kjelleberg, S. Profiling the secretome of the marine bacterium Pseudoalteromonas tunicata using amine-specific isobaric tagging (iTRAQ). J. Proteome Res. 2007, 6, 967–975.CrossRefGoogle Scholar
  20. 20.
    Glückmann, M.; Fella, K.; Waidelich, D.; Merkel, D.; Kruft, V.; Kramer, P.; Walter, Y.; Hellmann, J.; Karas, M.; Kröger, M. Prevalidation of potential protein biomarkers in toxicology using iTRAQ reagent technology. Proteomics 2007, 7, 1564–1574.CrossRefGoogle Scholar
  21. 21.
    Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 2004, 3, 1154–1169.CrossRefGoogle Scholar
  22. 22.
    Dean, A. R.; Overall, C. M. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol. Cell. Proteom. 2007, 6, 611–623.CrossRefGoogle Scholar
  23. 23.
    Stensjö, K.; Ow, S. Y.; Barrios-Llerena, M. E.; Lindblad, P.; Wright, P. C. An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions. J. Proteome Res. 2007, 6, 621–635.CrossRefGoogle Scholar
  24. 24.
    Cong, Y.; Fan, E.; Wang, E. Simultaneous proteomic profiling of four different growth states of human fibroblasts, using amine-reactive isobaric tagging reagents and tandem mass spectrometry. Mech. Ageing Dev. 2006, 127, 332–343.CrossRefGoogle Scholar
  25. 25.
    Siepen, J. A.; Swainston, N.; Jones, A. R.; Hart, S. R.; Hermjakob, H.; Jones, P.; Hubbard, S. J. An informatic pipeline for the data capture and submission of quantitative proteomic data using iTRAQ. Proteome Sci. 2007, 5(4), 1–9.Google Scholar
  26. 26.
    DeSouza, L.; Diehl, G.; Rodrigues, M. J.; Guo, J.; Romaschin, A. D.; Colgan, T. J.; Siu, K. W. M. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 2005, 4, 377–386.CrossRefGoogle Scholar
  27. 27.
    Lund, T. C.; Anderson, L. B.; McCullar, V.; Higgins, L.; Yun, G. H.; Grzywacz, B.; Verneris, M. R.; Miller, J. S. iTRAQ is a useful method to screen for membrane-bound proteins differentially expressed in human natural killer cell types. J. Proteome Res. 2007, 6, 644–653.CrossRefGoogle Scholar
  28. 28.
    Liu, T.; Donahue, K. C.; Hu, J.; Kurnellas, M. P.; Grant, J. E.; Li, H.; Elkabes, S. Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord. J. Proteome Res. 2007, 6, 2565–2575.CrossRefGoogle Scholar
  29. 29.
    Keshamouni, V. G.; Michailidis, G.; Grasso, C. S.; Anthwal, S.; Strahler, J. R.; Walker, A.; Arenberg, D. A.; Reddy, R. C.; Akulapalli, S.; Thannickal, V. J.; Standiford, T. J.; Andrews, P. C.; Omenn, G. S. Differentially protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res. 2006, 5, 1143–1154.CrossRefGoogle Scholar
  30. 30.
    Chaerkady, R.; Harsha, H. C.; Nalli, A.; Gucek, M.; Vivekanandan, P.; Akhtar, J.; Cole, R. N.; Simmers, J.; Schulick, R. D.; Singh, S.; Torbenson, M.; Pandey, A.; Thuluvath, P. J. A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J. Proteome Res. 2008, 7, 4289–4298.CrossRefGoogle Scholar
  31. 31.
    Meany, D. L.; Xie, H.; Thompson, L. V.; Arriaga, E. A.; Griffin, T. J. Identification of carbonylated proteins from enriched rat skeletal muscle mitochondria using affinity chromatography-stable isotope labeling and tandem mass spectrometry. Proteomics 2007, 7, 1150–1163.CrossRefGoogle Scholar
  32. 32.
    Griffin, T. J.; Xie, H.; Bandhakavi, S.; Popko, J.; Mohan, A.; Carlis, J. V.; Higgins, L. iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J. Proteome Res. 2007, 6, 4200–4209.CrossRefGoogle Scholar
  33. 33.
    Bantscheff, M.; Boesche, M.; Eberhard, D.; Matthieson, T.; Sweetman, G.; Kuster, B. Robust and sensitive iTRAQ quantitation on LTQ Orbitrap mass spectrometer. Mol. Cell. Proteom. 2008, 7(9), 1702–1713.CrossRefGoogle Scholar
  34. 34.
    Venable, J. D.; Wohlschlegel, J. D.; McClatchy, D. B.; Park, S. K.; Yates, J. R. III. Relative quantitation of stable isotope labeled peptides using linear ion trap-Orbitrap hybrid mass spectrometer. Anal. Chem. 2007, 79, 3056–3064.CrossRefGoogle Scholar
  35. 35.
    Sarvaiya, H. A.; Yoon, J. H.; Lazar, I. M. Proteome profile of the MCF7 cancer cell line: A mass spectrometric evaluation. Rapid Commun. Mass Spectrom. 2006, 20, 3039–3055.CrossRefGoogle Scholar
  36. 36.
    ExPASy/SwissProt (http://www.expasy.org Scholar
  37. 37.
    Malorni, L.; Cacace, G.; Cuccurullo, M.; Pocsfalvi, G.; Chambery, A.; Farina, A.; Di Maro, A.; Parente, A.; Antonio Malorni, A. Proteomic analysis of MCF-7 breast cancer cell line exposed to mitogenic concentration of 17β-estradiol. Proteomics 2006, 6, 5973–5982.CrossRefGoogle Scholar
  38. 38.
    Zhao, J.; Zhu, K.; Lubman, D. M.; Miller, F. R.; Shekhar, M. P. V.; Gerard, B.; Barder, T. J. Proteomic analysis of estrogen response of premalignant human breast cells using a 2-D liquid separation/mass mapping technique. Proteomics 2006, 6, 3847–3861.CrossRefGoogle Scholar
  39. 39.
    Huang, H.; Stasyk, T.; Morandell, S.; Dieplinger, H.; Falkensammer, G.; Griesmacher, A.; Mogg, M.; Schreiber, M.; Feuerstein, I.; Huck, C. W.; Stecher, G.; Bonn, G. K.; Huber, L. A. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 2006, 27 1741–1650.Google Scholar
  40. 40.
    Brusic, V.; Marina, O.; Wu, C. J.; Reinherz, E. L. Proteome informatics for cancer research: From molecules to clinic. Proteomics 2007, 7, 976–991.CrossRefGoogle Scholar
  41. 41.
    Minafra, I. P.; Cancemi, P.; Fontana, S.; Minafra, L.; Feo, S.; Becchi, M.; Freyria, A. M.; Minafra, S. Expanding the protein catalogue in the proteome reference map of human breast cancer cells. Proteomics 2006, 6, 2609–2625.CrossRefGoogle Scholar
  42. 42.
    Kreunin, P.; Yoo, C.; Urquidi, V.; Lubman, D. M.; Goodison, S. Proteomic profiling identifies breast tumor metastasis-associated factors in an isogenic model. Proteomics 2007, 7, 299–312.CrossRefGoogle Scholar
  43. 43.
    Kirmiz, C.; Li, B.; An, H. J.; Clowers, B. H.; Chew, H. K.; Lam, K. S.; Ferrige, A.; Alecio, R.; Borowsky, A. D.; Sulaimon, S.; Lebrilla, C. B.; Miyamoto, S. A serum glycomics approach to breast cancer biomarkers. Mol. Cell. Proteom. 2007, 6, 43–55.CrossRefGoogle Scholar
  44. 44.
    Canelle, L.; Bousquet, J.; Pionneau, C.; Hardouin, J.; Kastylevsky, G. C.; Joubert-Caron, R.; Caron, M. A proteomic approach to investigate potential biomarkers directed against membrane-associated breast cancer proteins. Electrophoresis 2006, 27, 1609–1616.CrossRefGoogle Scholar
  45. 45.
    Harwood, M. M.; Bleecker, J. V.; Rabinovitch, P. S.; Dovichi, N. J. Cell cycle dependent characterization of single MCF-7 breast cancer cell by 2-D CE. Electrophoresis 2007, 28, 932–937.CrossRefGoogle Scholar
  46. 46.
    Chong, P. K.; Gan, C. S.; Pham, T. K.; Wright, P. C. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. J. Proteome Res. 2006, 5, 1232–1240.CrossRefGoogle Scholar
  47. 47.
    Oda, Y.; Huang, K.; Cross, F. R.; Cowburn, D.; Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6591–6596.CrossRefGoogle Scholar
  48. 48.
    Gan, C. S.; Chong, P. K.; Pham, T. K.; Wright, P. C. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J. Proteome Res. 2007, 6, 821–827.CrossRefGoogle Scholar
  49. 49.
    Bolstad, B. M.; Irizarry, R. A.; Åstrand, M.; Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2), 185–193.CrossRefGoogle Scholar
  50. 50.
    Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300.Google Scholar
  51. 51.
    Furuya, Y.; Kohno, N.; Fujiwara, Y.; Saitoh, Y. Mechanisms of estrogen action on the proliferation of MCF-7 human breast cancer cells in an improved culture medium. Cancer Res. 1989, 49, 6670–6674.Google Scholar
  52. 52.
    Darbre, P.; Yates, J.; Curtis, S.; King, R. J. B. Effect of estradiol on human breast cancer cells in culture. Cancer Res. 1983, 43, 349–354.Google Scholar
  53. 53.
    Osborne, C. K.; Boldt, D. H.; Estrada, P. Human breast cancer cell cycle synchronization by estrogens and antiestrogens in culture. Cancer Res. 1984, 44, 1433–1439.Google Scholar
  54. 54.
    Stackievicz, R.; Drucker, L.; Radnay, J.; Beyth, Y.; Yarkoni, S.; Cohen, I. Tamoxifen modulates apoptotic pathways in primary endometrial cell cultures. Clin. Cancer Res. 2001, 7, 415–420.Google Scholar
  55. 55.
    Schnaper, H. W. Estrogen—it’s not just for reproduction anymore. Kidney Int. 1999, 55, 1577–1579.CrossRefGoogle Scholar
  56. 56.
    Osborne, C. K.; Boldt, D. H.; Clark, G. M.; Trent, J. M. Effects of tamoxifen on human breast cancer cell cycle kinetics: Accumulation of cells in early G1 phase. Cancer Res. 1983, 43, 3583–3585.Google Scholar
  57. 57.
    Rosati, A.; Ammirante, M.; Gentilella, A.; Basile, A.; Festa, M.; Pascale, M.; Marzullo, L.; Belisario, M. A.; Tosco, A.; Franceschelli, S.; Moltedo, O.; Pagliuca, G.; Lerose, R.; Turco, M. C. Apoptosis inhibition in cancer cells: A novel molecular pathway that involves BAG3 protein. Int. J. Biochem. Cell. Biol. 2007, 39, 1337–1342.CrossRefGoogle Scholar
  58. 58.
    Makeyev, A. V.; Liebhaber, S. A. The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms. RNA 2002, 8, 265–278.CrossRefGoogle Scholar
  59. 59.
    Leffers, H.; Dejgaard, K.; Celis, J. E. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur. J. Biochem. 1995, 230, 447–453.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Jenny M. Armenta
    • 1
  • Ina Hoeschele
    • 1
    • 2
  • Iulia M. Lazar
    • 1
    • 3
    Email author
  1. 1.Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of StatisticsVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations