On-line detection of human skin vapors


Vapors released by the skin in the hand of one human subject are detected in real time by sampling them directly from the ambient gas surrounding the hand, ionizing them by secondary electrospray ionization (SESI, via contact with the charged cloud from an electrospray source), and analyzing them in a mass spectrometer with an atmospheric pressure source (API-MS). This gas-phase approach is complementary to alternative on-line surface ionization methods such as DESI and DART. A dominating peak of lactic acid and a complete series of saturated and singly unsaturated fatty acids (C12 to C18) are observed, in accordance with previous off-line studies by gas chromatography-mass spectrometry. Several other metabolites have been identified, including ketomonocarboxylic and hydroxymonocarboxylic acids.


  1. 1.

    Acree, F., Jr.; Turner, R. B.; Gouck, H. K.; Beroza, M.; Smith, N. L-Lactic Acid: A Mosquito Attractant Isolated from Humans. Science 1968, 161, 1346–1347.

    CAS  Article  Google Scholar 

  2. 2.

    Bosch, O. J.; Geier, M.; Boeckh, J. Contribution of Fatty Acids to Olfactory Host Finding of Female Aedes aegypti. Chem. Senses 2000, 25, 323–330.

    CAS  Article  Google Scholar 

  3. 3.

    Bernier, U. R.; Booth, M. M.; Yost, R. A. Analysis of Human Skin Emanations by Gas Chromatography/Mass Spectrometry. 1: Thermal Desorption of Attractants for the Yellow Fever Mosquito (Aedes aegypti) from Handled Glass Beads. Anal. Chem. 1999, 71, 1–7.

    CAS  Article  Google Scholar 

  4. 4.

    Bernier, U. R.; Kline, D. L.; Barnard, D. R.; Schreck, C. E.; Yost, R. A. Analysis of Human Skin Emanations by Gas Chromatography/Mass Spectrometry: 2. Identification of Volatile Compounds That Are Candidate Attractants for the Yellow Fever Mosquito (Aedes aegypti). Anal. Chem. 2000, 72, 747–756.

    CAS  Article  Google Scholar 

  5. 5.

    Knols, B. G. J.; Meijerink, J. Odors Influence Mosquito Behavior. Sci Med. 1997, 4, 56–63.

    Google Scholar 

  6. 6.

    Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473.

    Article  Google Scholar 

  7. 7.

    Chen, H.; Venter, A.; Cooks, R. G. Extractive Electrospray Ionization for Direct Analysis of Undiluted Urine, Milk and Other Complex Mixtures without Sample Preparation. Chem. Commun. 2006, 2042–2044.

  8. 8.

    Gallagher, M.; Wysocki, C. J.; Leyden, J. J.; Spielman, A. I.; Sun, X.; Preti, G.. Br. J. Dermatol. 2008, 159, 780–791.

    CAS  Article  Google Scholar 

  9. 9.

    Curran, A. M.; Rabin, S. I.; Prada, P. A.; Furton, K. G. Comparison of the Volatile Organic Compounds Present in Human Odor Using SPME-GC/MS. J. Chem. Ecol. 2005, 31, 1607–1619.

    CAS  Article  Google Scholar 

  10. 10.

    Penn, D. J.; Oberzaucher, E.; Grammer, K.; Fischer, G.; Soini, H. A.; Wiesler, D.; Novotny, M. V.; Dixon, S. J.; Xu, Y.; Brereton, R. G. Individual and Gender Fingerprints in Human Body Odour. J. R. Soc. Interface 2007, 4, 331–340.

    Article  Google Scholar 

  11. 11.

    Smith, D.; Španeěl, P. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) for On-line Trace Gas Analysis. Mass Spectrom. Rev. 2005, 24, 661–700.

    CAS  Article  Google Scholar 

  12. 12.

    Turner, C.; Parekh, B.; Walton, C.; Španeěl, P.; Smith, D.; Evans, M. L. An Exploratory Comparative Study of Volatile Compounds in Exhaled Breath and Emitted by Skin Using Sselected Ion Flow Tube Mass Spectrometry (SIFT-MS). Rapid Commun. Mass Spectrom. 2008, 22, 526–532.

    CAS  Article  Google Scholar 

  13. 13.

    Lindinger, W.; Hansel, A.; Jordan, A. On-line Monitoring of Volatile Organic Compounds at pptv Levels by Means of Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS): Medical Applications, Food Control and Environmental Research. Int. J. Mass Spectrom. Ion Process. 1998, 173, 191–241.

    CAS  Article  Google Scholar 

  14. 14.

    Steeghs, M. M. L.; Moeskops, B. W. M.; van Swam, K.; Cristescu, S. M.; Scheepers, P. T. J.; Harren, F. J. M. On-line Monitoring of UV-induced Lipid Peroxidation Products from Human Skin In Vivo Using Pproton-Transfer Reaction mass Spectrometry. Int. J. Mass. Spectrom. 2006, 253, 58–64.

    CAS  Article  Google Scholar 

  15. 15.

    Chen, H.; Wortmann, A.; Zhang, W.; Zenobi, R. Rapid In Vivo Fingerprinting of Nonvolatile Compounds in Breath. Angew. Chem. Int. Ed. 2007, 46, 580–583.

    CAS  Article  Google Scholar 

  16. 16.

    Song, Y.; Talaty, N.; Tao, W. A.; Pan, Z.; Cooks, R. G. Rapid Ambient Mass Spectrometric Profiling of Intact, Untreated Bacteria Using Desorption Electrospray Ionization. Chem. Commun. 2007, 61–63.

  17. 17.

    Whitehouse, C. M.; Levin, F.; Meng, C. K.; Fenn, J. B. Proceedings of the 34th ASMS Conference on Mass Spectrometry and Allied Topics; Denver, CO, 1986; p 507.

  18. 18.

    Fuerstenau, S.; Kiselev, P.; Fenn, J. B. Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics; Dallas, TX, June 1999 (ThOE 3:00).

  19. 19.

    Wu, C.; Siems, W. F.; Hill, H., Jr. Secondary Electrospray Ionization Ion Mobility Spectrometry/Mass Spectrometry of Illicit Drugs. Anal. Chem. 2000, 72, 396–403.

    CAS  Article  Google Scholar 

  20. 20.

    Tam, M.; Hill, H. Jr. Secondary Electrospray Ionization-Ion Mobility Spectrometry for Explosive Vapor Detection. Anal. Chem. 2004, 76, 2741–2747.

    CAS  Article  Google Scholar 

  21. 21.

    Lee, C. Y.; Shiea, J. Gas Chromatography Connected to Multiple Channel Electrospray Ionization Mass Spectrometry for the Detection of Volatile Organic Compounds. Anal. Chem. 1998, 70, 2757–2761.

    CAS  Article  Google Scholar 

  22. 22.

    Martínez-Lozano, P.; Fernández de la Mora, J. Electrospray Ionization of Volatiles in Breath. Int. J. Mass Spectrom. 2007, 265, 68–72.

    Article  Google Scholar 

  23. 23.

    Cody, R. B.; Laramee, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302.

    CAS  Article  Google Scholar 

  24. 24.

    Martínez-Lozano, P.; Rus, J.; Fernández de la Mora, G.; Hernández, M.; Fernández de la Mora, J. Secondary Electrospray Ionization (SESI) of Ambient Vapors for Explosive Detection at Concentrations below Parts per Trillion. J. Am. Soc. Mass Spectrom. 2009, 20, 287–294.

    Article  Google Scholar 

  25. 25.

    Martínez-Lozano, P.; Fernández de la Mora, J. Direct Aanalysis of Fatty Acid Vapors in Breath by Electrospray Ionization and Atmospheric Pressure Ionization-Mass Spectrometry. Anal. Chem. 2008, 80, 8210–8215.

    Article  Google Scholar 

  26. 26.

    Martínez-Lozano, P. Proceedings of the 56th ASMS Conference on Mass Spectrometry and Allied Topics; Denver, CO, 2008 (WP 517).

  27. 27.

    Lane, D. A.; Thomson, B. A. Monitoring a Chlorine Spill from a Train Derailment. J. Air Pollution Control Assoc. 1981, 31, 122–127.

    CAS  Article  Google Scholar 

  28. 28.

    Nicolaides, N. Skin Lipids: Their Biochemical Uniqueness. Science 1974, 186, 19–26.

    CAS  Article  Google Scholar 

  29. 29.

    Puhvel, S. M.; Reisner, R. M.; Sakamoto, M. Analysis of Lipid Composition of Isolated Human Sebaceous Gland Homogenates after Incubation with Cutaneous Bacteria: Thin-Layer Chromatography. J. Invest. Dermatol. 1975, 64, 406–411.

    CAS  Article  Google Scholar 

  30. 30.

    Kanda, F.; Yagi, E.; Fukuda, M.; Nakajima, K.; Ohta, T.; Nakata, O. Elucidation of Chemical Compounds Responsible for Foot Malodour. Br. J. Dermatol. 1990, 122, 771–776.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Juan Fernández de la Mora.

Additional information

Published online February 27, 2009

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martínez-Lozano, P., de la Mora, J.F. On-line detection of human skin vapors. J Am Soc Mass Spectrom 20, 1060–1063 (2009). https://doi.org/10.1016/j.jasms.2009.01.012

Download citation


  • Dodecanoic Acid
  • Extractive Electrospray Ionization
  • Skin Emanation
  • Skin Vapor
  • Secondary Electrospray Ionization