Advertisement

Electron capture dissociation and collision-induced dissociation of metal ion (Ag+, Cu2+, Zn2+, Fe2+, and Fe3+) complexes of polyamidoamine (PAMAM) dendrimers

  • Malgorzata A. Kaczorowska
  • Helen J. Cooper
Articles

Abstract

The electron capture dissociation (ECD) and collision-induced dissociation (CID) of complexes of polyamidoamine (PAMAM) dendrimers with metal ions Ag+, Cu2+, Zn2+, Fe2+, and Fe3+ were determined by Fourier transform ion cyclotron resonance mass spectrometry. Complexes were of the form [PD + M + mH]5+ where PD = generation two PAMAM dendrimer with amidoethanol surface groups, M = metal ion, m = 2−4. Complementary information regarding the site and coordination chemistry of the metal ions can be obtained from the two techniques. The results suggest that complexes of Fe3+ and Cu2+ are coordinated via both core tertiary amines, whereas coordination of Ag+ involves a single core tertiary amine. The Zn2+ and Fe2+ complexes do not appear to involve coordination by the dendrimer core.

Keywords

Electron Capture Dissociation PAMAM Dendrimer Dendrimer Complex Electron Capture Dissociation Mass Spectrum Harge State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_200400674_MOESM1_ESM.pdf (71 kb)
Supplementary material, approximately 72 KB.
13361_2011_200400674_MOESM2_ESM.pdf (77 kb)
Supplementary material, approximately 78 KB.
13361_2011_200400674_MOESM3_ESM.pdf (78 kb)
Supplementary material, approximately 80 KB.
13361_2011_200400674_MOESM4_ESM.pdf (100 kb)
Supplementary material, approximately 103 KB.
13361_2011_200400674_MOESM5_ESM.pdf (100 kb)
Supplementary material, approximately 103 KB.
13361_2011_200400674_MOESM6_ESM.pdf (99 kb)
Supplementary material, approximately 101 KB.
13361_2011_200400674_MOESM7_ESM.pdf (100 kb)
Supplementary material, approximately 103 KB.
13361_2011_200400674_MOESM8_ESM.pdf (502 kb)
Supplementary material, approximately 514 KB.

References

  1. 1.
    Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers-Starburst-Dendric-Macromolecules. Polym. J. 1985, 17(1), 117–132.CrossRefGoogle Scholar
  2. 2.
    Esfand, R.; Tomalia, D. A. Poly(Amidoamine) (PAMAM) Dendrimers: From Biomimicry to Drug Delivery and Biomedical Applications: Drug Disc. Today 2001, 6(8), 427–436.Google Scholar
  3. 3.
    Boas, U.; Heegaard, P. M. H. Dendrimers in Drug Research. Chem. Soc. Rev. 2004, 33, 43–63.CrossRefGoogle Scholar
  4. 4.
    Svenson, S.; Tomalia, D. A. Commentary—Dendrimers in Biomedical Applications—Reflections on the Field. Adv. Drug Del. Rev. 2005, 57(15), 2106–2129.CrossRefGoogle Scholar
  5. 5.
    Tomalia, D. A.; Reyna, L. A.; Svenson, S. Dendrimers as Multi-Purpose Nanodevices for Oncology Drug Delivery and Diagnostic Imaging. Bioch. Soc. Trans. 2007, 35, 61–67.CrossRefGoogle Scholar
  6. 6.
    Astruc, D.; Chardac, F. Dendric Catalysts and Dendrimers in Catalysis. Chem. Rev. 2001, 101, 2991–3023.CrossRefGoogle Scholar
  7. 7.
    Reek, J. N. H.; Arevalo, S.; Van Heerbeek, R.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. Dendrimers in Catalysis. Adv. Catalysis 2006, 49, 71–151.Google Scholar
  8. 8.
    Zhao, M. Q.; Sun, L.; Crooks, R. M. Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Chem. Soc. 1998, 120(19), 4877–4878.CrossRefGoogle Scholar
  9. 9.
    Vohs, J. K.; Fahlman, B. D. Advances in the Controlled Growth of Nanoclusters Using a Dendritic Architecture. New J. Chem. 2007, 31(7), 1041–1051.CrossRefGoogle Scholar
  10. 10.
    Zhang, Y. W.; Peng, H. S.; Huang, W.; Zhou, Y. F.; Zhang, X. H.; Yan, D. Y. Hyperbranched Poly(Amidoamine) as the Stabilizer and Reductant to Prepare Colloid Silver Nanoparticles In Situ and Their Antibacterial Activity. J. Phys. Chem. C 2008, 112(7), 2330–2336.CrossRefGoogle Scholar
  11. 11.
    Esumi, K.; Isono, R.; Yoshimura, T. Preparation of PAMAM-and PPI-metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir 2004, 20(1), 237–243.CrossRefGoogle Scholar
  12. 12.
    Balogh, L.; Tomalia, D. A. Poly(Amidoamine) Dendrimer-Templated Nanocomposites: 1. Synthesis of Zero-Valent Copper Nanoclusters. J. Am. Chem. Soc. 1998, 120(29), 7355–7356.CrossRefGoogle Scholar
  13. 13.
    Diallo, M. S.; Balogh, L.; Shafagati, A.; Johnson, J. H.; Goddard, W. A.; Tomalia, D. A. Poly(Amidoamine) Dendrimers: A New Class of High Capacity Chelating Agents for Cu(II) Ions. Environ. Sci. Technol. 1999, 33(5), 820–824.CrossRefGoogle Scholar
  14. 14.
    Zhou, L.; Russell, D. H.; Zhao, M. Q.; Crooks, R. M. Characterization of Poly(Amidoamine) Dendrimers and Their Complexes with Cu2+ by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Macromolecules 2001, 34(11), 3567–3573.CrossRefGoogle Scholar
  15. 15.
    Balogh, L.; Tomalia, D. A.; Hagnauer, G. L. A Revolution of Nanoscale Proportions. Chem. Innovation 2000, 30(3), 19–26.Google Scholar
  16. 16.
    Ottaviani, M. F.; Valluzzi, R.; Balogh, L. Internal Structure of Silver-Poly(Amidoamine) Dendrimer Complexes and Nanocomposites. Macromolecules 2002, 35(13), 5105–5115.CrossRefGoogle Scholar
  17. 17.
    Tarazona-Vasquez, F.; Balbuena, P. B. Complexation of the Lowest Generation Poly(Amidoamine)-NH2 Dendrimers with Metal Ions, Metal Atoms, and Cu(II) Hydrates: An Ab Initio Study. J. Phys. Chem. B 2004, 108, 15992–16001.CrossRefGoogle Scholar
  18. 18.
    Schalley, C. A.; Baytekin, B.; Baytekin, H. T.; Engeser, M.; Felder, T.; Rang, A. Mass Spectrometry as a Tool in Dendrimer Chemistry: From Self-Assembling Dendrimers to Dendrimer Gas-Phase Host—Guest chemistry. J. Phys. Org. Chem. 2006, 19(8), 479–490.CrossRefGoogle Scholar
  19. 19.
    Mazzitelli, C. L.; Brodbelt, J. S. Investigation of Silver-Binding to PAMAM Dendrimers by ESI Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 676–684.CrossRefGoogle Scholar
  20. 20.
    Lee, S.; Han, S. Y.; Lee, T. G.; Chung, G.; Lee, D.; Oh, H. B. Observation of Pronounced b-dot, y Cleavages in the Electron Capture Dissociation Mass Spectrometry of Polyamidoamine (PAMAM) Dendrimer Ions with Amide Functionalities. J. Am. Soc. Mass Spectrom. 2006, 17, 536–543.CrossRefGoogle Scholar
  21. 21.
    Kaczorowska, M. A.; Cooper, H. J. ECD, EDD, and CID of PAMAM Dendrimer Ions with Amino, Amidoethanol, and Sodium Carboxylate Surface Groups. J. Am. Soc. Mass Spectrom. 2008, 19, 1312–1319.CrossRefGoogle Scholar
  22. 22.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed. Mass Spectrom. 1984, 11(11), 601.CrossRefGoogle Scholar
  23. 23.
    Liu, H.; Hakansson, K. Divalent Metal Ion—Peptide Interactions Probed by Electron Capture Dissociation of Trications. J. Am. Soc. Mass Spectrom. 2006, 17, 1731–1741.CrossRefGoogle Scholar
  24. 24.
    James, P. F.; Perugini, M. A.; O’Hair, R. A. J. Electron Capture Dissociation of Complexes of Diacylglycerophosphocholine and Divalent Metal Ions: Competition Between Charge Reduction and Radical Induced Phospholipid Fragmentation. J. Am. Soc. Mass Spectrom. 2008, 19(7), 978–986.CrossRefGoogle Scholar
  25. 25.
    Liang, X. L. R.; Liu, J.; Leblanc, Y.; Covey, T.; Ptak, A. C.; Brenna, J. T.; McLuckey, S. A. Electron Transfer Dissociation of Doubly Sodiated Glycerophosphocholine Lipids. J. Am. Soc. Mass Spectrom. 2007, 18(10), 1783–1788.CrossRefGoogle Scholar
  26. 26.
    Ottaviani, M. F.; Turro, N. J.; Jockusch, S.; Tomalia, D. A. Aggregational Process of the Positively Charged Surfactants CTAC and CAT16 in the Presence of Starburst Dendrimers: An Electron Paramagnetic Resonance Spectroscopic Study. Colloid Surf. A 1996, 115, 9–21.CrossRefGoogle Scholar
  27. 27.
    Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Acc. Chem. Res. 2001, 34, 181–190.CrossRefGoogle Scholar
  28. 28.
    Krot, K. A.; de Namor, A. F. D.; Aguilar-Cornejo, A.; Nolan, K. B. Speciation, Stability Constants, and Structures of Complexes of Copper(II), Nickel(II), Silver(I), and Mercury(II) with PAMAM Dendrimer and Related Tetraamide Ligands. Inorg. Chim. Acta 2005, 358(12), 3497–3505.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  1. 1.School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbaston, BirminghamUnited Kingdom

Personalised recommendations