Full-scan accurate mass selectivity of ultra-performance liquid chromatography combined with time-of-flight and orbitrap mass spectrometry in hormone and veterinary drug residue analysis

  • E. van der Heeft
  • Y. J. C. Bolck
  • B. Beumer
  • A. W. J. M. Nijrolder
  • A. A. M. Stolker
  • M. W. F. Nielen


The applicability of ultra-performance liquid chromatography (UPLC) combined with full-scan accurate mass time-of-flight (TOF) and Orbitrap mass spectrometry (MS) to the analysis of hormone and veterinary drug residues was evaluated. Extracts from blank bovine hair were fortified with 14 steroid esters. UPLC-Orbitrap MS performed at a resolving power of 60,000 (FWHM) enabled the detection and accurate mass measurement (<3 ppm error) of all 14 steroid esters at low ng/g concentration level, despite the complex matrix background. A 5 ppm mass tolerance window proved to be essential to generate highly selective reconstructed ion chromatograms (RICs) having reduced background from the hair matrix. UPLC-Orbitrap MS at a lower resolving power of 7500 and UPLC-TOFMS at mass resolving power 10,000 failed both to detect all of the steroid esters in hair extracts owing to the inability to mass resolve analyte ions from co-eluting isobaric matrix compounds. In a second application, animal feed extracts were fortified with coccidiostats drugs at levels ranging from 240 to 1900 ng/g. UPLC-Orbitrap MS conducted at a resolving power of 7500 and 60,000 and UPLC-TOFMS detected all of the analytes at the lowest investigated level. Thanks to the higher analyte-to-matrix background ratio, the utilization of very narrow mass tolerance windows in the RIC was not required. This study demonstrates that even when the targeted sample preparation from conventional LC-MS/MS is applied to UPLC with full-scan accurate mass MS, false compliant (false negative) results can be obtained when the mass resolving power of the MS is insufficient to separate analyte ions from isobaric co-eluting sample matrix ions. The current trend towards more generic and less selective sample preparation is expected to aggravate this issue further.

Supplementary material

13361_2011_200300451_MOESM1_ESM.doc (334 kb)
Supplementary material, approximately 342 KB.


  1. 1.
    Stolker, A. A. M.; Zuidema, T.; Nielen, M. W. F. Residue Analysis of Veterinary Drugs and Growth-promoting Agents. Trends. Anal. Chem. 2007, 26, 967–979.CrossRefGoogle Scholar
  2. 2.
    Nielen, M. W. F.; Lasaroms, J. J. P.; Essers, M. L.; Sanders, M. B.; Oosterink, J. E.; Meijer, T.; Stolker, A. A. M. Multiresidue Analysis of β-Agonists in Bovine and Porcine Urine, Feed, and Hair Using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 199–210.CrossRefGoogle Scholar
  3. 3.
    Kaufmann, A.; Butcher, P.; Maden, K.; Widmer, M. Ultra-Performance Chromatography Coupled to Time of Flight Mass Spectrometry (UPLC-TOF): A Novel Tool for Multiresidue Screening of Veterinary Drugs in Urine. Anal. Chim. Acta 2007, 586, 13–21.CrossRefGoogle Scholar
  4. 4.
    Laks, S.; Pelander, A.; Vuori, E.; Ali-Tolppa, E.; Sippola, E.; Ojanperä, I. Analysis of Street Drugs in Seized Material without Primary Reference Standards. Anal. Chem. 2004, 76, 7375–7379.CrossRefGoogle Scholar
  5. 5.
    Kolmonen, M.; Leinonen, A.; Pelander, A.; Ojanperä, I. A General Screening Method for Doping Agents in Human Urine by Solid Phase Extraction and Liquid Chromatography/Time-of-Flight Mass Spectrometry. Anal. Chim. Acta 2007, 585, 94–102.CrossRefGoogle Scholar
  6. 6.
    Garcia-Reyes, J. F.; Hernando, M. D.; Ferrer, C.; Molina-Diaz, A.; Fernández-Alba, A. R. Large Scale Pesticide Multiresidue Methods in Food Combining Liquid Chromatography-Time-of-Flight Mass Spectrometry and Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 7308–7323.CrossRefGoogle Scholar
  7. 7.
    Hernando, M. D.; Mezcua, M.; Suárez-Barcena, J. M.; Fernández-Alba, A. R. Liquid Chromatography with Time-of-Flight Mass Spectrometry for Simultaneous Determination of Chemotherapeutant Residues in Salmon. Anal. Chim. Acta 2006, 562, 176–184.CrossRefGoogle Scholar
  8. 8.
    Ojanperä, S.; Pelander, A.; Pelzing, M.; Krebs, I.; Vuori, E.; Ojanperä, I. Isotopic Pattern and Accurate Mass Determination in Urine Drug Screening by Liquid Chromatography/Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1161–1167.CrossRefGoogle Scholar
  9. 9.
    Makarov, A.; Denisov, E.; Lange, O.; Kholomeev, A.; Horning, S. Proceedings of the 53rd ASMS Conference on Mass Spectrometry and Allied Topics; San Antonia, TX, June 2005.Google Scholar
  10. 10.
    Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78, 2113–2120.CrossRefGoogle Scholar
  11. 11.
    Virus, E.; Sobolevsky, T.; Rodchenkov, G. Introduction of HPLC/Orbitrap Mass Spectrometry as Screening Method for Doping Control. J. Mass Spectrom. 2008, 43, 949–957.CrossRefGoogle Scholar
  12. 12.
    Krauss, M.; Hollender, J. Analysis of Nitrosamines in Wastewater: Exploring the Trace Level Quantification Capabilities of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2008, 80, 834–842.CrossRefGoogle Scholar
  13. 13.
    Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 977–982.CrossRefGoogle Scholar
  14. 14.
    Nielen, M. W. F.; Engelen, M. C. van; Zuiderent, R.; Ramaker, R. Screening and Confirmation Criteria for Hormone Residue Analysis Using Liquid Chromatography Accurate Mass Time-of-Flight, Fourier Transform Ion Cyclotron Resonance and Orbitrap Mass Spectrometry Techniques. Anal. Chim. Acta 2007, 586, 122–129.CrossRefGoogle Scholar
  15. 15.
    Commission Decision 2002/657/EC, Official J. Eur. Commun. 2002, L221–L228.Google Scholar
  16. 16.
    Calbiani, F.; Careri, M.; Elviri, L.; Mangia, A.; Zagnoni, I. Matrix Effects on Accurate Mass Measurements of Low-Molecular Weight Compounds Using Liquid Chromatography-Electrospray-Quadrupole Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2006, 41, 289–294.CrossRefGoogle Scholar
  17. 17.
    Kaufmann, A.; Butcher, P. Strategies to Avoid False Negative Findings in Residue Analysis Using Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3566–3572.CrossRefGoogle Scholar
  18. 18.
    Nielen, M. W. F.; Lasaroms, J. J. P.; Mulder, P. P. J.; van Hende, J.; van Rhijn, J. A.; Groot, M. J. Multiresidue Screening of Intact Testosterone Esters and Boldenone Undecylenate in Bovine Hair Using Liquid Chromatography Electrospray Tandem Mass Spectrometry. J. Chromatogr. B 2006, 830, 126–134.CrossRefGoogle Scholar
  19. 19.
    Blom, K. F. Estimating the Precision of Exact Mass Measurements on a Orthogonal Time-of-Flight Mass Spectrometer: Anal. Chem. 2001, 73, 715–719.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • E. van der Heeft
    • 1
  • Y. J. C. Bolck
    • 1
  • B. Beumer
    • 1
  • A. W. J. M. Nijrolder
    • 1
  • A. A. M. Stolker
    • 1
  • M. W. F. Nielen
    • 1
    • 2
  1. 1.RIKILT Institute of Food SafetyWageningenThe Netherlands
  2. 2.Laboratory of Organic ChemistryWageningen UniversityWageningenThe Netherlands

Personalised recommendations