Full-scan accurate mass selectivity of ultra-performance liquid chromatography combined with time-of-flight and orbitrap mass spectrometry in hormone and veterinary drug residue analysis

  • E. van der Heeft
  • Y. J. C. Bolck
  • B. Beumer
  • A. W. J. M. Nijrolder
  • A. A. M. Stolker
  • M. W. F. Nielen


The applicability of ultra-performance liquid chromatography (UPLC) combined with full-scan accurate mass time-of-flight (TOF) and Orbitrap mass spectrometry (MS) to the analysis of hormone and veterinary drug residues was evaluated. Extracts from blank bovine hair were fortified with 14 steroid esters. UPLC-Orbitrap MS performed at a resolving power of 60,000 (FWHM) enabled the detection and accurate mass measurement (<3 ppm error) of all 14 steroid esters at low ng/g concentration level, despite the complex matrix background. A 5 ppm mass tolerance window proved to be essential to generate highly selective reconstructed ion chromatograms (RICs) having reduced background from the hair matrix. UPLC-Orbitrap MS at a lower resolving power of 7500 and UPLC-TOFMS at mass resolving power 10,000 failed both to detect all of the steroid esters in hair extracts owing to the inability to mass resolve analyte ions from co-eluting isobaric matrix compounds. In a second application, animal feed extracts were fortified with coccidiostats drugs at levels ranging from 240 to 1900 ng/g. UPLC-Orbitrap MS conducted at a resolving power of 7500 and 60,000 and UPLC-TOFMS detected all of the analytes at the lowest investigated level. Thanks to the higher analyte-to-matrix background ratio, the utilization of very narrow mass tolerance windows in the RIC was not required. This study demonstrates that even when the targeted sample preparation from conventional LC-MS/MS is applied to UPLC with full-scan accurate mass MS, false compliant (false negative) results can be obtained when the mass resolving power of the MS is insufficient to separate analyte ions from isobaric co-eluting sample matrix ions. The current trend towards more generic and less selective sample preparation is expected to aggravate this issue further.


Mass Error Accurate Mass Measurement Estradiol Benzoate Reso Lving Power Steroid Ester 

Supplementary material

13361_2011_200300451_MOESM1_ESM.doc (334 kb)
Supplementary material, approximately 342 KB.


  1. 1.
    Stolker, A. A. M.; Zuidema, T.; Nielen, M. W. F. Residue Analysis of Veterinary Drugs and Growth-promoting Agents. Trends. Anal. Chem. 2007, 26, 967–979.CrossRefGoogle Scholar
  2. 2.
    Nielen, M. W. F.; Lasaroms, J. J. P.; Essers, M. L.; Sanders, M. B.; Oosterink, J. E.; Meijer, T.; Stolker, A. A. M. Multiresidue Analysis of β-Agonists in Bovine and Porcine Urine, Feed, and Hair Using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 199–210.CrossRefGoogle Scholar
  3. 3.
    Kaufmann, A.; Butcher, P.; Maden, K.; Widmer, M. Ultra-Performance Chromatography Coupled to Time of Flight Mass Spectrometry (UPLC-TOF): A Novel Tool for Multiresidue Screening of Veterinary Drugs in Urine. Anal. Chim. Acta 2007, 586, 13–21.CrossRefGoogle Scholar
  4. 4.
    Laks, S.; Pelander, A.; Vuori, E.; Ali-Tolppa, E.; Sippola, E.; Ojanperä, I. Analysis of Street Drugs in Seized Material without Primary Reference Standards. Anal. Chem. 2004, 76, 7375–7379.CrossRefGoogle Scholar
  5. 5.
    Kolmonen, M.; Leinonen, A.; Pelander, A.; Ojanperä, I. A General Screening Method for Doping Agents in Human Urine by Solid Phase Extraction and Liquid Chromatography/Time-of-Flight Mass Spectrometry. Anal. Chim. Acta 2007, 585, 94–102.CrossRefGoogle Scholar
  6. 6.
    Garcia-Reyes, J. F.; Hernando, M. D.; Ferrer, C.; Molina-Diaz, A.; Fernández-Alba, A. R. Large Scale Pesticide Multiresidue Methods in Food Combining Liquid Chromatography-Time-of-Flight Mass Spectrometry and Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 7308–7323.CrossRefGoogle Scholar
  7. 7.
    Hernando, M. D.; Mezcua, M.; Suárez-Barcena, J. M.; Fernández-Alba, A. R. Liquid Chromatography with Time-of-Flight Mass Spectrometry for Simultaneous Determination of Chemotherapeutant Residues in Salmon. Anal. Chim. Acta 2006, 562, 176–184.CrossRefGoogle Scholar
  8. 8.
    Ojanperä, S.; Pelander, A.; Pelzing, M.; Krebs, I.; Vuori, E.; Ojanperä, I. Isotopic Pattern and Accurate Mass Determination in Urine Drug Screening by Liquid Chromatography/Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1161–1167.CrossRefGoogle Scholar
  9. 9.
    Makarov, A.; Denisov, E.; Lange, O.; Kholomeev, A.; Horning, S. Proceedings of the 53rd ASMS Conference on Mass Spectrometry and Allied Topics; San Antonia, TX, June 2005.Google Scholar
  10. 10.
    Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78, 2113–2120.CrossRefGoogle Scholar
  11. 11.
    Virus, E.; Sobolevsky, T.; Rodchenkov, G. Introduction of HPLC/Orbitrap Mass Spectrometry as Screening Method for Doping Control. J. Mass Spectrom. 2008, 43, 949–957.CrossRefGoogle Scholar
  12. 12.
    Krauss, M.; Hollender, J. Analysis of Nitrosamines in Wastewater: Exploring the Trace Level Quantification Capabilities of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2008, 80, 834–842.CrossRefGoogle Scholar
  13. 13.
    Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 977–982.CrossRefGoogle Scholar
  14. 14.
    Nielen, M. W. F.; Engelen, M. C. van; Zuiderent, R.; Ramaker, R. Screening and Confirmation Criteria for Hormone Residue Analysis Using Liquid Chromatography Accurate Mass Time-of-Flight, Fourier Transform Ion Cyclotron Resonance and Orbitrap Mass Spectrometry Techniques. Anal. Chim. Acta 2007, 586, 122–129.CrossRefGoogle Scholar
  15. 15.
    Commission Decision 2002/657/EC, Official J. Eur. Commun. 2002, L221–L228.Google Scholar
  16. 16.
    Calbiani, F.; Careri, M.; Elviri, L.; Mangia, A.; Zagnoni, I. Matrix Effects on Accurate Mass Measurements of Low-Molecular Weight Compounds Using Liquid Chromatography-Electrospray-Quadrupole Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2006, 41, 289–294.CrossRefGoogle Scholar
  17. 17.
    Kaufmann, A.; Butcher, P. Strategies to Avoid False Negative Findings in Residue Analysis Using Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3566–3572.CrossRefGoogle Scholar
  18. 18.
    Nielen, M. W. F.; Lasaroms, J. J. P.; Mulder, P. P. J.; van Hende, J.; van Rhijn, J. A.; Groot, M. J. Multiresidue Screening of Intact Testosterone Esters and Boldenone Undecylenate in Bovine Hair Using Liquid Chromatography Electrospray Tandem Mass Spectrometry. J. Chromatogr. B 2006, 830, 126–134.CrossRefGoogle Scholar
  19. 19.
    Blom, K. F. Estimating the Precision of Exact Mass Measurements on a Orthogonal Time-of-Flight Mass Spectrometer: Anal. Chem. 2001, 73, 715–719.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • E. van der Heeft
    • 1
  • Y. J. C. Bolck
    • 1
  • B. Beumer
    • 1
  • A. W. J. M. Nijrolder
    • 1
  • A. A. M. Stolker
    • 1
  • M. W. F. Nielen
    • 1
    • 2
  1. 1.RIKILT Institute of Food SafetyWageningenThe Netherlands
  2. 2.Laboratory of Organic ChemistryWageningen UniversityWageningenThe Netherlands

Personalised recommendations