Abstract
Analysis of petroleum samples at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) typically requires a prolonged accumulation of ions and/or summing up a large number of scans. Here, a chip-based micro-ESI system (Advion NanoMate, Ithaca, NY) has been successfully automated in combination with FT-ICR MS analysis of petroleum samples. A foil-sealed 96-well glass plate prevents solvent evaporation, with no visible loss of sample after 20 h of continuous operation. Mass spectra obtained from the same sample but taken from different wells after various time delays were very similar. Data from replicate samples in different wells could be combined to enhance mass spectral signal-to-noise ratio and dynamic range. Furthermore, the automated data acquisition eliminates sample carryover, and produces heteroatom class distribution, double-bond equivalents (DBE), and carbon number very similar to those from the conventional (manual) micro-ESI experiments.
Article PDF
References
He, F.; Hendrickson, C. L.; Marshall, A. G. Baseline Mass Resolution of Peptide Isobars: A New Record for Molecular Mass Resolution. Anal. Chem. 2001, 73, 647–650.
Kim, S.; Rodgers, R. P.; Marshall, A. G. Truly “Exact” Mass: Elemental Composition Can Be Determined Uniquely from Molecular Mass Measurement at Similar to 0.1 mDA Accuracy for Molecules up to 500 Da. Int. J. Mass Spectrom. 2006, 251, 260–265.
Kendrick, E. A Mass Scale Based on CH2 = 14.0000 for High Resolution Mass Spectrometry of Organic Compounds. Anal. Chem. 1963, 35, 2146–2154.
Hughey, C. A.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultra-High Resolution Broadband Mass Spectra. Anal. Chem. 2001, 73, 4676–4681.
Kim, S.; Kramer, R. W.; Hatcher, P. G. Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the van Krevelen Diagram. Anal. Chem. 2003, 75, 5336–5344.
Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78.
Wu, Z.; Rogers, R. P.; Marshall, A. G. Characterization of Vegetable Oils: Detailed Compositional Fingerprints Derived from Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 5322–5328.
Cooper, H. J.; Marshall, A. G. Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometric Analysis of Wine. J. Agric. Food Chem. 2001, 49, 5710–5718.
Wu, Z.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Compositional Analysis of Military Explosives by Electrospray Ionization Fourier Transform Negative Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2002, 74, 1879–1883.
Wu, Z.; Rodgers, R. P.; Marshall, A. G. Compositional Determination of Acidic Species in Illinois #6 Coal Extracts by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2004, 18, 1424–1428.
Kim, S.; Simpson, A. J.; Kujawinski, E. B.; Freitas, M. A.; Hatcher, P. G. High Resolution Electrospray Ionization Mass Spectrometry and 2D Solution NMR for the Analysis of Dom Extracted by C18 Solid Phase Disk. Org. Geochem. 2003, 34, 1325–1335.
Hockaday, W. C.; Grannas, A. M.; Kim, S.; Hatcher, P. G. Direct Molecular Evidence for the Degradation and Mobility of Black Carbon in Soils from Ultrahigh-Resolution Mass Spectral Analysis of Dissolved Organic Matter from a Fire-Impacted Forest Soil. Org. Geochem. 2006, 37, 501–510.
Marshall, A. G.; Rodgers, R. P. Petroleomics: The Next Grand Challenge for Chemical Analysis. Acc. Chem. Res. 2004, 37, 53–59.
Klein, G. C.; Kim, S.; Rodgers, R. P.; Marshall, A. G. Mass Spectral Analysis of Asphaltenes: I. Compositional Differences between Pressure-Drop and Solvent-Drop Asphaltenes Determined by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2006, 20, 1965–1972.
Klein, G. C.; Kim, S.; Rodgers, R. P.; Marshall, A. G.; Yen, A. Mass Spectral Analysis of Asphaltenes: II. Detailed Compositional Comparison of Asphaltenes Deposit to Its Crude Oil Counterpart for Two Geographically Different Crude Oils by ESI FT-ICR MS. Energy Fuels 2006, 20, 1973–1979.
Fu, J. M.; Kim, S.; Rodgers, R. P.; Hendrickson, C. L.; Marshall, A. G.; Qian, K. N. Nonpolar Compositional Analysis of Vacuum Gas Oil Distillation Fractions by Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2006, 20, 661–667.
Stanford, L. A.; Kim, S.; Rodgers, R. P.; Marshall, A. G. Characterization of Compositional Changes in Vacuum Gas Oil Distillation Cuts by Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry. Energy Fuels 2006, 20, 1664–1673.
Schaub, T. M.; Jennings, D. W.; Kim, S.; Rodgers, R. P.; Marshall, A. G. Heat-Exchanger Deposits in an Inverted Steam-Assisted Gravity Drainage Operation: Part 2. Organic Acid Analysis by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2007, 21, 185–194.
Schaub, T. M.; Hendrickson, C. L.; Horning, S.; Quinn, J. P.; Senko, M. W.; Marshall, A. G. High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14.5 Tesla. Anal. Chem. 2008, 80, 3985–3990.
Zamfir, A.; Vakhrushev, S.; Sterling, A.; Niebel, H. J.; Allen, M.; Peter-Katalinic, J. Fully Automated Chip-Based Mass Spectrometry for Complex Carbohydrate System Analysis. Anal. Chem. 2004, 76, 2046–2054.
Trunzer, M.; Graf, D.; Kiffe, M. Comparison of a Two-Dimensional Liquid Chromatography/Mass Spectrometry Approach with a Chip-Based Nanoelectrospray Device for Structural Elucidation of Metabolites in a Human ADME Study Using a Quadrupole Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2007, 21, 937–944.
Pereira-Medrano, A. G.; Sterling, A.; Snijder, A. P. L.; Reardon, K. F.; Wright, P. C. A Systematic Evaluation of Chip-Based Nanoelectrospray Parameters for Rapid Identification of Proteins from a Complex Mixture. J. Am. Soc. Mass Spectrom. 2007, 18, 1714–1725.
Ejsing, C. S.; Duchoslav, E.; Sampaio, J.; Simons, K.; Bonner, R.; Thiele, C.; Ekroos, K.; Shevchenko, A. Automated Identification and Quantification of Glycerophospholipid Molecular Species by Multiple Precursor Ion Scanning. Anal. Chem. 2006, 78, 6202–6214.
Qian, K.; Edwards, K. E.; Dechert, G. J.; Jaffe, S. B.; Green, L. A.; Olmstead, W. N. Measurement of Total Acid Number (TAN) and Tan Boiling Point Distribution in Petroleum Products by Electrospray Ionization Mass Spectrometry. Anal. Chem. 2008, 80, 849–855.
Håkansson, K.; Chalmers, M. J.; Quinn, J. P.; McFarland, M. A.; Hendrickson, C. L.; Marshall, A. G. Combined Electron Capture and Infrared Multiphoton Dissociation for Multistage MS/MS in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Anal. Chem. 2003, 75, 3256–3262.
Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D.-H.; Marshall, A. G. External Accumulation of Ions for Enhanced Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 970–976.
Ledford, E. B., Jr.; Rempel, D. L.; Gross, M. L. Space Charge Effects in Fourier Transform Mass Spectrometry Mass Calibration. Anal. Chem. 1984, 56, 2744–2748.
Shi, S. D.-H.; Drader, J. J.; Freitas, M. A.; Hendrickson, C. L.; Marshall, A. G. Comparison and Interconversion of the Two Most Common Frequency-to-Mass Calibration Functions for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 2000, 195/196, 591–598.
Blakney G. T.; Lam T. T.; Hendrickson C. L.; Marshall A. G. FT-ICR MS Data Station for Automated High Speed Data-Dependent Acquisition. Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics; Nashville, TN, May 2004.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published online October 9, 2008
Rights and permissions
About this article
Cite this article
Kim, S., Rodgers, R.P., Blakney, G.T. et al. Automated electrospray ionization FT-ICR mass spectrometry for petroleum analysis. J Am Soc Mass Spectrom 20, 263–268 (2009). https://doi.org/10.1016/j.jasms.2008.10.001
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1016/j.jasms.2008.10.001