Skip to main content

Comparison of ion coupling strategies for a microengineered quadrupole mass filter


The limitations of conventional machining and assembly techniques require that designs for quadrupole mass analyzers with rod diameters less than a millimeter are not merely scale versions of larger instruments. We show how silicon planar processing techniques and microelectromechanical systems (MEMS) design concepts can be used to incorporate complex features into the construction of a miniature quadrupole mass filter chip that could not easily be achieved using other microengineering approaches. Three designs for the entrance and exit to the filter consistent with the chosen materials and techniques have been evaluated. The differences between these seemingly similar structures have a significant effect on the performance. Although one of the designs results in severe attenuation of transmission with increasing mass, the other two can be scanned to m/z=400 without any corruption of the mass spectrum. At m/z=219, the variation in the transmission of the three designs was found to be approximately four orders of magnitude. A maximum resolution of M/ΔM=87 at 10% peak height has been achieved at m/z=219 with a filter operated at 6 MHz and constructed using rods measuring (508±5) µm in diameter.


  1. 1.

    Badman, E. R.; Cooks, R. G. Miniature Mass Analyzers. J. Mass Spectrom. 2000, 35, 659–671.

    CAS  Article  Google Scholar 

  2. 2.

    Orient, O. J.; Chutjian, A.; Garkanian, V. Miniature High-resolution Quadrupole Mass-spectrometer Array. Rev. Sci. Instrum. 1997, 68, 1392–1397.

    Google Scholar 

  3. 3.

    Holkeboer, D. H.; Karandy, T. L.; Currier, F. C.; Frees, L. C.; Ellefson, R. E. Miniature Quadrupole Residual Gas Analyzer for Process Monitoring at milliTorr Pressures. J. Vac. Sci. Technol. 1998, A16, 1157–1162.

    Article  Google Scholar 

  4. 4.

    Ferran, R. J.; Boumsellek, S. High Pressure Effects in Miniature Arrays of Quadrupole Analyzers for Residual Gas Analysis from 10−9 to 10−2 Torr. J. Vac. Sci. Technol. 1996, A14, 1258–1265.

    Article  Google Scholar 

  5. 5.

    Velasquez-Garcia, L. F.; Akinwande, A. I. An Out-of-plane MEMS Quadrupole for a Portable Mass Spectrometer. Proceedings of the Transducers Eurosensors conference; Lyon, France, June 2007; p. 2315–2320.

  6. 6.

    Taylor, S.; Tindall, R.; Syms, R. R. A. Silicon Based Quadrupole Mass Spectrometry Using Microelectromechanical Systems. J. Vac. Sci. Technol. 2001, B19, 557–562.

    Article  Google Scholar 

  7. 7.

    Brewer, R. G.; Devoe, R. G.; Kallenbach, R. Planar Ion Microtraps. Phys. Rev. 1992, A46, R6781-R6784.

    Article  Google Scholar 

  8. 8.

    Wells, J. M.; Badman, E. R.; Cooks, R. G. A Quadrupole Ion Trap with Cylindrical Geometry Operated in the Mass-Selective Instability Mode. Anal. Chem. 1998, 70, 438–444.

    CAS  Article  Google Scholar 

  9. 9.

    Badman, E. R.; Johnson, R. C.; Plass, W. R.; Cooks, R. G. A Miniature Cylindrical Quadrupole Ion Trap: Simulation and Experiment. Anal. Chem. 1998, 70, 4896–4901.

    CAS  Article  Google Scholar 

  10. 10.

    Petzold, G.; Siebert, P.; Muller, J. A Micromachined Electron Beam Ion Source. Sensors Actuators. 2000, B67, 101–111.

    Article  Google Scholar 

  11. 11.

    Wilfert, S.; Edelmann, C. Miniaturized Vacuum Gauges. J. Vac. Sci. Tech. 2004, A 22, 309–320.

    Article  Google Scholar 

  12. 12.

    Kline-Schoder, R. J.; Sorensen, P. H. Miniature High Vacuum Pump for Mass Analytical Instruments. Proceedings of the American Vacuum Society 54th International Symposium; October, 2007, Seattle, Washington, USA.

  13. 13.

    Dawson, P. H. Quadrupole Mass Spectrometry and Its Applications; Elsevier Scientific: Amsterdam, 1976.

    Google Scholar 

  14. 14.

    Boumsellek, S.; Ferran, R. J. Trade-Offs in Miniature Quadrupole Designs. J. Am. Soc. Mass Spectrom. 2001, 12, 633–640.

    CAS  Article  Google Scholar 

  15. 15.

    Wiberg, D.; Myung, N. V.; Eyre, B.; Shcheglov, K.; Orient, O.; Moore, E.; Munz, P. LIGA Fabricated Two-dimensional Quadrupole Array and Scroll Pump for Miniature Gas Chromatograph/Mass Spectrometer. SPIE Proc. 2003, 4878, 8–13.

    Article  Google Scholar 

  16. 16.

    Geear, M.; Syms, R. R. A.; Wright, S.; Holmes, A. S. Monolithic MEMS Quadrupole Mass Spectrometers by Deep Silicon Etching. J. Micromech. Sys. 2005, 14, 1156–1166.

    CAS  Article  Google Scholar 

  17. 17.

    Syms, R. R. A.; Tate, T. J.; Ahmad, M. M.; Taylor, S. Design of a Microengineered Quadrupole Electrostatic Lens. IEEE Trans. Electron Devices. 1998, TED-45, 2304–2311.

    Article  Google Scholar 

  18. 18.

    Kornienko, O.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M. Micro Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 50–53.

    CAS  Article  Google Scholar 

  19. 19.

    Pau, S.; Pai, C. S.; Low, Y. L.; Moxom, J.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M. Microfabricated Quadrupole Ion Trap for Mass Spectrometer Applications. Phys. Rev. Lett. 2006, 96, 120801.

    CAS  Article  Google Scholar 

  20. 20.

    Dawson, P. H. Fringing Fields in the Quadrupole Mass Filter. Int. J. Mass Spectrom. Ion Phys. 1971, 6, 33–44.

    CAS  Article  Google Scholar 

  21. 21.

    Hunter, K. L.; McIntosh, B. J. An Improved Model of the Fringing Fields of a Quadrupole Mass Filter. Int. J. Mass Spectrom. Ion Processes. 1989, 87, 157–164.

    CAS  Article  Google Scholar 

  22. 22.

    Blaum, K.; Geppert, C.; Müller, P.; Nörtershäuser, W.; Otten, E. W.; Schmitt, A.; Trautmann, N.; Wendt, K.; Bradshaw, B. A. Properties and Performance of a Quadrupole Mass Filter used for Resonance Ionization Mass Spectrometry. Int. J. Mass Spectrom. 1998, 181, 67.

    CAS  Article  Google Scholar 

  23. 23.

    Barnett, E. F.; Tandler, W. S. W.; Turner, W. R. Quadrupole Mass Filter with Fringing-Field Penetrating Structure. U.S.A. Patent no. 3560734.

  24. 24.

    Brubaker, W. M.; Tuul, J. Performance Studies of a Quadrupole Mass Filter. Rev. Sci. Instrum. 1964, 35, 1007–1010.

    Article  Google Scholar 

  25. 25.

    Syms, R. R. A.; Michelutti, L.; Ahmad, M. M. Two-Dimensional Microfabricated Electrostatic Einzel Lens. Sensors Actuators A. 2003, 107, 285.

    CAS  Article  Google Scholar 

  26. 26.

    Benitez, A.; Esteve, J.; Bausells, J. Bulk Silicon Microelectromechanical Devices Fabricated from Commercial Bonded and Etched-Back Silicon-on-Insulator Substrates. Sensors Actuators. 1995, A50, 99–103.

    Article  Google Scholar 

  27. 27.

    Syms, R. R. A. Monolithic Microengineered Mass Spectrometer. European patent no. EP1540697, U.S.A. Patent no. 7208729.

  28. 28.

    Klaassen, E. H.; Petersen, K.; Noworolski, J. M.; Logan, J.; Maluf, N. I.; Brown, J.; Storment, C.; McCulley, W.; Kovacs, T. A. Silicon Fusion Bonding and Deep Reactive Ion Etching: A New Technology for Microstructures. Sensors Actuators. 1996, A52, 132–139.

    Article  Google Scholar 

  29. 29.

    Hynes, A. M.; Ashraf, H.; Bhardwaj, J. K.; Hopkins, J.; Johnston, I.; Shepherd, J. N. Recent Advances in Silicon Etching for MEMS Using the ASE™ Process. Sensors Actuators. 1999, 74, 13–17.

    CAS  Article  Google Scholar 

  30. 30.

    Mita, Y.; Tixier, A.; Oshima, S.; Mita, M.; Gouy, J.-P.; Fujita, H. A Silicon Shadow Mask with Unlimited Patterns and a Mechanical Alignment Structure by Al-Delay Masking Process. Trans. JIEE. 2000, 120-E, 357–362.

    Google Scholar 

  31. 31.

    Denison, D. R. Operating Parameters of a Quadrupole in a Grounded Cylindrical Housing. J. Vac. Sci. Technol. 1971, 2, 266–269.

    Article  Google Scholar 

  32. 32.

    Finlay, A.; Syms, R. R. A.; Wright, S.; Malcolm, A. Microsaic Ionchip: The First Commercially Available Mass Spectrometer Chip. Proceedings of the 57th Annual Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy; Pittcon 06, Orlando, FL, March 2006; 681.

  33. 33.

    Ma, F. M.; Taylor, S. Simulation of the Ion Trajectories through the Mass Filter of a Quadrupole Mass Spectrometer. IEE Proc A. 1996, 143, 71–76.

    Google Scholar 

  34. 34.

    Brubaker, W. In Advances in Mass Spectrometry, Vol. IV, Kendrick, E., Ed.; Institute of Petroleum: London, 1968; p. 293.

    Google Scholar 

  35. 35.

    Hager, J. W. Performance Optimization and Fringing Field Modifications of a 24-mm Long rf-only Quadrupole Mass Spectrometer. Rapid Commun. Mass Spectrom. 1999, 13, 740–748.

    CAS  Article  Google Scholar 

  36. 36.

    Dawson, P. H. The Acceptance of the Quadrupole Mass Filter. Int. J. Mass Spectrom. Ion Phys. 1975, 17, 423–445.

    Article  Google Scholar 

  37. 37.

    NIST Mass Spectral Library, Gaithersburg, MD.

  38. 38.

    Brubaker, W. M.; Tuul, J. Performance Studies of a Quadrupole Mass Filter. Rev. Sci. Instrum. 1964, 35, 1007–1010.

    Article  Google Scholar 

  39. 39.

    Dobson, G. S.; Enke, C. G. Axial Ion Focusing in a Miniature Linear Ion Trap. Anal. Chem. 2007, 79, 3779–3785.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Richard R. A. Syms.

Additional information

Published online September 5, 2008

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wright, S., Syms, R.R.A., O’Prey, S. et al. Comparison of ion coupling strategies for a microengineered quadrupole mass filter. J Am Soc Mass Spectrom 20, 146–156 (2009).

Download citation


  • Small Aperture
  • Large Aperture
  • Leaf Spring
  • Fringe Field
  • Quadrupole Mass Filter