Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electrospray tandem mass spectrometry


Reports of anticancer and immunosuppressive properties have spurred recent interest in the bacterially produced prodiginines. We use electrospray tandem mass spectrometry (ES-MS/MS) to investigate prodigiosin, undecylprodiginine, and streptorubin B (butyl-meta-cycloheptylprodiginine) and to explore their fragmentation pathways to explain the unusual methyl radical loss and consecutive fragment ions that dominate low-energy collision-induced dissociation (CID) mass spectra. The competition between the formation of even-electron ions and radical ions is examined in detail. Theoretical calculations are used to optimize the structures and calculate the energies of both reactants and products using the Gaussian 03 program. Results indicate that protonation occurs on the nitrogen atom that initially held no hydrogen, thus allowing formation of a pseudo-seven-membered ring that constitutes the most stable ground state [M+H]+ structure. From this precursor, experimental data show that methyl radical loss has the lowest apparent threshold but, alternatively, even-electron fragment ions can be formed by loss of a methanol molecule. Computational modeling indicates that methyl radical loss is the more endothermic process in this competition, but the lower apparent threshold associated with methyl radical loss points to a lower kinetic barrier. Additionally, this characteristic and unusual loss of methyl radical (in combination with weaker methanol loss) from each prodiginine is useful for performing constant neutral loss scans to quickly and efficiently identify all prodiginines in a complex biological mixture without any clean-up or purification. The feasibility of this approach has been proven through the identification of a new, low-abundance prodigiosin analog arising from Hahella chejuensis.


  1. 1.

    Williams, R. P. Biosynthesis of Prodigiosin, a Secondary Metabolite of Serratia marcescens. Appl. Microbiol. 1973, 25, 7102–7109.

    Google Scholar 

  2. 2.

    Wasserman, H. H.; McKeon, J.; Santer, U. V. Studies Related to the Biosynthesis of Prodigiosin in Serratia marcescens. Biochem. Biophys. Res. Commun. 1960, 3, 146–149.

    Article  CAS  Google Scholar 

  3. 3.

    Rapoport, H.; Holden, K. G. The Synthesis of Prodigiosin. J. Am. Chem. Soc. 1962, 82, 5510–5511.

    Article  Google Scholar 

  4. 4.

    Gerber, N. N. Prodigiosin-like Pigments. CRC Crit. Rev. Microbiol. 1975, 3, 469–485.

    Article  CAS  Google Scholar 

  5. 5.

    Laatsch, H.; Kellner, M.; Weyland, H. Butyl-meta-cycloheptylprodiginine — a revision of the structure of the former ortho-isomer. J. Antibiot. 1991, 44, 187–191.

    CAS  Google Scholar 

  6. 6.

    Gerber, N. N. Prodigiosin-like Pigments from Actinomadura (Nocardia) pelletieri. J. Antibiot. 1971, 24, 636–640.

    CAS  Google Scholar 

  7. 7.

    Kawauchi, K.; Shibutani, K.; Yagisawa, H.; Kamata, H.; Nakatsuji, S.; Anzai, H.; Yokoyama, Y.; Ikegami, Y.; Moriyama, Y.; Hirata, H. A Possible Immunosuppressant, Cycloprodigiosin Hydrochloride, Obtained from Pseudoalteromonas denitrificans. Biochem. Biophys. Res. Commun. 1997, 237, 543–547.

    Article  CAS  Google Scholar 

  8. 8.

    Bennett, J. W.; Bentley, R. Seeing Red: The Story of Prodigiosin. Adv. Appl. Microbiol. 2000, 47, 1–32.

    Article  CAS  Google Scholar 

  9. 9.

    Furstner, A. Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years. Angew. Chem. Int. Ed. Engl. 2003, 42, 3582–3603.

    Article  Google Scholar 

  10. 10.

    Cerdeno, A. M.; Bibb, M. J.; Challis, G. L. Analysis of the Prodiginine Biosynthesis Gene Cluster of Streptomyces coelicolor A3(2): New Mechanisms for Chain Initiation and Termination in Modular Multienzymes. Chem. Biol. 2001, 8, 817–829.

    Article  CAS  Google Scholar 

  11. 11.

    Llagostera, E.; Soto-Cerrato, V.; Montaner, B.; Perez-Tomas, R. Prodigiosin Induces Apoptosis by Acting on Mitochondria in Human Lung Cancer Cells. Ann. N. Y. Acad. Sci. 2003, 1010, 178–181.

    Article  CAS  Google Scholar 

  12. 12.

    Manderville, R. A. Synthesis, Proton-Affinity and Anti-Cancer Properties of the Prodigiosin-Group Natural Products. Curr. Med. Chem. Anticancer Agents. 2001, 1, 195–218.

    Article  CAS  Google Scholar 

  13. 13.

    Montaner, B.; Castillo-Avila, W.; Martinell, M.; Ollinger, R.; Aymami, J.; Giralt, E.; Perez-Tomas, R. DNA Interaction and Dual Topoisomerase I and II Inhibition Properties of the Anti-Tumor Drug Prodigiosin. Toxicol. Sci. 2005, 85, 870–879.

    Article  CAS  Google Scholar 

  14. 14.

    Perez-Tomas, R.; Montaner, B.; Llagostera, E.; Soto-Cerrato, V. The Prodigiosins, Proapoptotic Drugs with Anticancer Properties. Biochem. Pharmacol. 2003, 66, 1447–1452.

    Article  CAS  Google Scholar 

  15. 15.

    Montaner, B.; Perez-Tomas, R. The Prodigiosins: A New Family of Anticancer Drugs. Curr. Cancer Drug Targets. 2003, 3, 57–65.

    Article  CAS  Google Scholar 

  16. 16.

    Soto-Cerrato, V.; Llagostera, E.; Montaner, B.; Scheffer, G. L.; Perez-Tomas, R. Mitochondria-Mediated Apoptosis Operating Irrespective of Multidrug Resistance in Breast Cancer Cells by the Anticancer Agent Prodigiosin. Biochem. Pharmacol. 2004, 68, 1345–1352.

    Article  CAS  Google Scholar 

  17. 17.

    Stepkowski, S. M.; Nagy, Z. S.; Wang, M. E.; Behbod, F.; Erwin-Cohen, R.; Kahan, B. D.; Kirken, R. A. PNU156804 Inhibits Jak3 Tyrosine Kinase and Rat Heart Allograft Rejection. Transplant. Proc. 2001, 33, 3272–3273.

    Article  CAS  Google Scholar 

  18. 18.

    Mortellaro, A.; Songia, S.; Gnocchi, P.; Ferrari, M.; Fornasiero, C.; D’Alessio, R.; Isetta, A.; Colotta, F.; Golay, J. New Immunosuppressive Drug PNU156804 Blocks IL-2-dependent Proliferation and NF-kappa B and AP-1 Activation. J. Immunol. 1999, 162, 7102–7109.

    CAS  Google Scholar 

  19. 19.

    Furstner, A.; Grabowski, J.; Lehmann, C.W. Total Synthesis and Structural Refinement of the Cyclic Tripyrrole Pigment Nonylprodigiosin. J. Org. Chem. 1999, 64, 8275–8280.

    Article  Google Scholar 

  20. 20.

    Dairi, K.; Tripathy, S.; Attardo, G.; Lavallee, J. F. Two Step Synthesis of the Bipyrrole Precursor of Prodigiosins. Tetrahedron Lett. 2006, 47, 2605–2606.

    Article  CAS  Google Scholar 

  21. 21.

    Stanley, A. E.; Walton, L. J.; Kourdi Zerikly, M.; Corre, C.; Challis, G. L. Elucidation of the Streptomyces coelicolor Pathway to 4-Methoxy-2,2′-bipyrrole-5-carboxaldehyde, an Intermediate in Prodiginine Biosynthesis. Chem. Commun. (Camb.) 2006, 38, 3981–3983.

    Article  Google Scholar 

  22. 22.

    Mo, S. J.; Sydor, P. K.; Corre, C.; Alhamadsheh, M. M.; Stanley, A. E.; Haynes, S. W.; Song, L.; Reynolds, K. A.; Challis, G. L. Elucidation of the Streptomyces coelicolor Pathway to 2-Undecylpyrrole, a Key Intermediate in Undecylprodiginine and Streptorubin B Biosynthesis. Chem. Biol. 2008, 15, 137–148.

    Article  CAS  Google Scholar 

  23. 23.

    Odulate, O.; Barona-Gomez, F.; Corre, C.; Challis, G. L. Unpublished results.

  24. 24.

    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. J. B.; Ortiz, V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, M. W.; Wong, W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 03; Gaussian Inc.: Pittsburgh, PA, 2003.

    Google Scholar 

  25. 25.

    Becke, A. D. Density-Functional Thermochemistry: III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652

    Article  CAS  Google Scholar 

  26. 26.

    Perdew, J. P.; Wang, Y. Pair-Distribution Function and Its Coupling-Constant Average for the Spin-Polarized Electron Gas. Phys. Rev. B. 1992, 46, 12947.

    Article  Google Scholar 

  27. 27.

    Rajkarnikar, A.; Kwon, H. J.; Suh, J. W. Role of Adenosine Kinase in the Control of Streptomyces Differentiations: Loss of Adenosine Kinase Suppresses Sporulation and Actinorhodin Biosynthesis While Inducing Hyperproduction of Undecylprodigiosin in Streptomyces lividans. Biochem. Biophys. Res. Commun. 2007, 363, 322–328.

    Article  CAS  Google Scholar 

  28. 28.

    Sigsby, M. L.; Day, R. J.; Cooks, R. G. Fragmentation of Even Electron Ions: Protonated Ketones and Ethers. Org. Mass. Spectrom. 1979, 14, 273.

    Article  CAS  Google Scholar 

  29. 29.

    Fenselau, C.; Brown, P.; Patterson, D. G. Fragmentation of [M+H]+ to Form Ion Radicals Following Chemical Ionization. Spectroscopy (Amsterdam). 1983, 2, 348–351.

    CAS  Google Scholar 

  30. 30.

    Bowie, J. H.; Stringer, M. B.; Duus, F.; Lawesson, S. O.; Larsson, F. C. V.; Madsen, J. O. Fragmentations of Organic Negative-Ions, Mercapto Acids and Esters: A Reinvestigation. Aust. J. Chem. 1984, 37, 1619–1624.

    Article  CAS  Google Scholar 

  31. 31.

    Nikolic, D.; Li, Y.; Chadwick, L. R.; Grubjesic, S.; Schwab, P.; Metz, P.; van Breemen, R.B. Metabolism of 8-Prenylnaringenin, a Potent Phytoestrogen from Hops (Humulus lupulus), by Human Liver Microsomes. Drug Metab. Dispos. 2004, 32, 272–279.

    Article  CAS  Google Scholar 

  32. 32.

    Levsen, K.; Schiebel, H. M.; Terlouw, J. K.; Jobst, K. J.; Elend, M.; Preiss, A.; Thiele, H.; Ingendoh, A. Even-Electron Ions: A Systematic Study of the Neutral Species Lost in the Dissociation of Quasi-Molecular Ions. J. Mass Spectrom. 2007, 42, 1024–1044.

    Article  CAS  Google Scholar 

  33. 33.

    Williams, J. P.; Nibbering, N. M.; Green, B. N.; Patel, V. J.; Scrivens, J. H. Collision-Induced Fragmentation Pathways Including Odd-Electron Ion Formation from Desorption Electrospray Ionisation Generated Protonated and Deprotonated Drugs Derived from Tandem Accurate Mass Spectrometry. J. Mass Spectrom. 2006, 41, 1277–1286.

    Article  CAS  Google Scholar 

  34. 34.

    Jeong, H.; Yim, J. H.; Lee, C.; Choi, S. H.; Park, Y. K.; Yoon, S. H.; Hur, C. G.; Kang, H. Y.; Kim, D.; Lee, H. H.; Park, K. H.; Park, S. H.; Park, H. S.; Lee, H. K.; Oh, T. K.; Kim, J. F. Genomic Blueprint of Hahella chejuensis, a Marine Microbe Producing an Algicidal Agent. Nucleic Acids Res. 2005, 33, 7066–7073.

    Article  CAS  Google Scholar 

  35. 35.

    Chen, K.; Lane, P.; Cai, Y.; Rees, B. B.; Challis, G. L.; Cole, R. B. Unusual Odd-Electron Fragments from Even-Electron Protonated Prodiginine Precursors Using Positive Ion Electrospray Tandem Mass Spectrometry. Proceedings of the 55th ASMS Conference on Mass Spectrometry and Allied Topics, Indianapolis IN, June 3–7, 2007.

Download references

Author information



Corresponding author

Correspondence to Richard B. Cole.

Additional information

Published online August 9, 2008

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, K., Rannulu, N.S., Cai, Y. et al. Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 19, 1856–1866 (2008). https://doi.org/10.1016/j.jasms.2008.08.002

Download citation


  • Neutral Loss
  • Fragmentation Pathway
  • Tandem Mass Spectrum
  • Prodigiosin
  • Electrospray Tandem Mass Spectrometry