Abstract
Reports of anticancer and immunosuppressive properties have spurred recent interest in the bacterially produced prodiginines. We use electrospray tandem mass spectrometry (ES-MS/MS) to investigate prodigiosin, undecylprodiginine, and streptorubin B (butyl-meta-cycloheptylprodiginine) and to explore their fragmentation pathways to explain the unusual methyl radical loss and consecutive fragment ions that dominate low-energy collision-induced dissociation (CID) mass spectra. The competition between the formation of even-electron ions and radical ions is examined in detail. Theoretical calculations are used to optimize the structures and calculate the energies of both reactants and products using the Gaussian 03 program. Results indicate that protonation occurs on the nitrogen atom that initially held no hydrogen, thus allowing formation of a pseudo-seven-membered ring that constitutes the most stable ground state [M+H]+ structure. From this precursor, experimental data show that methyl radical loss has the lowest apparent threshold but, alternatively, even-electron fragment ions can be formed by loss of a methanol molecule. Computational modeling indicates that methyl radical loss is the more endothermic process in this competition, but the lower apparent threshold associated with methyl radical loss points to a lower kinetic barrier. Additionally, this characteristic and unusual loss of methyl radical (in combination with weaker methanol loss) from each prodiginine is useful for performing constant neutral loss scans to quickly and efficiently identify all prodiginines in a complex biological mixture without any clean-up or purification. The feasibility of this approach has been proven through the identification of a new, low-abundance prodigiosin analog arising from Hahella chejuensis.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Williams, R. P. Biosynthesis of Prodigiosin, a Secondary Metabolite of Serratia marcescens. Appl. Microbiol. 1973, 25, 7102–7109.
Wasserman, H. H.; McKeon, J.; Santer, U. V. Studies Related to the Biosynthesis of Prodigiosin in Serratia marcescens. Biochem. Biophys. Res. Commun. 1960, 3, 146–149.
Rapoport, H.; Holden, K. G. The Synthesis of Prodigiosin. J. Am. Chem. Soc. 1962, 82, 5510–5511.
Gerber, N. N. Prodigiosin-like Pigments. CRC Crit. Rev. Microbiol. 1975, 3, 469–485.
Laatsch, H.; Kellner, M.; Weyland, H. Butyl-meta-cycloheptylprodiginine — a revision of the structure of the former ortho-isomer. J. Antibiot. 1991, 44, 187–191.
Gerber, N. N. Prodigiosin-like Pigments from Actinomadura (Nocardia) pelletieri. J. Antibiot. 1971, 24, 636–640.
Kawauchi, K.; Shibutani, K.; Yagisawa, H.; Kamata, H.; Nakatsuji, S.; Anzai, H.; Yokoyama, Y.; Ikegami, Y.; Moriyama, Y.; Hirata, H. A Possible Immunosuppressant, Cycloprodigiosin Hydrochloride, Obtained from Pseudoalteromonas denitrificans. Biochem. Biophys. Res. Commun. 1997, 237, 543–547.
Bennett, J. W.; Bentley, R. Seeing Red: The Story of Prodigiosin. Adv. Appl. Microbiol. 2000, 47, 1–32.
Furstner, A. Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years. Angew. Chem. Int. Ed. Engl. 2003, 42, 3582–3603.
Cerdeno, A. M.; Bibb, M. J.; Challis, G. L. Analysis of the Prodiginine Biosynthesis Gene Cluster of Streptomyces coelicolor A3(2): New Mechanisms for Chain Initiation and Termination in Modular Multienzymes. Chem. Biol. 2001, 8, 817–829.
Llagostera, E.; Soto-Cerrato, V.; Montaner, B.; Perez-Tomas, R. Prodigiosin Induces Apoptosis by Acting on Mitochondria in Human Lung Cancer Cells. Ann. N. Y. Acad. Sci. 2003, 1010, 178–181.
Manderville, R. A. Synthesis, Proton-Affinity and Anti-Cancer Properties of the Prodigiosin-Group Natural Products. Curr. Med. Chem. Anticancer Agents. 2001, 1, 195–218.
Montaner, B.; Castillo-Avila, W.; Martinell, M.; Ollinger, R.; Aymami, J.; Giralt, E.; Perez-Tomas, R. DNA Interaction and Dual Topoisomerase I and II Inhibition Properties of the Anti-Tumor Drug Prodigiosin. Toxicol. Sci. 2005, 85, 870–879.
Perez-Tomas, R.; Montaner, B.; Llagostera, E.; Soto-Cerrato, V. The Prodigiosins, Proapoptotic Drugs with Anticancer Properties. Biochem. Pharmacol. 2003, 66, 1447–1452.
Montaner, B.; Perez-Tomas, R. The Prodigiosins: A New Family of Anticancer Drugs. Curr. Cancer Drug Targets. 2003, 3, 57–65.
Soto-Cerrato, V.; Llagostera, E.; Montaner, B.; Scheffer, G. L.; Perez-Tomas, R. Mitochondria-Mediated Apoptosis Operating Irrespective of Multidrug Resistance in Breast Cancer Cells by the Anticancer Agent Prodigiosin. Biochem. Pharmacol. 2004, 68, 1345–1352.
Stepkowski, S. M.; Nagy, Z. S.; Wang, M. E.; Behbod, F.; Erwin-Cohen, R.; Kahan, B. D.; Kirken, R. A. PNU156804 Inhibits Jak3 Tyrosine Kinase and Rat Heart Allograft Rejection. Transplant. Proc. 2001, 33, 3272–3273.
Mortellaro, A.; Songia, S.; Gnocchi, P.; Ferrari, M.; Fornasiero, C.; D’Alessio, R.; Isetta, A.; Colotta, F.; Golay, J. New Immunosuppressive Drug PNU156804 Blocks IL-2-dependent Proliferation and NF-kappa B and AP-1 Activation. J. Immunol. 1999, 162, 7102–7109.
Furstner, A.; Grabowski, J.; Lehmann, C.W. Total Synthesis and Structural Refinement of the Cyclic Tripyrrole Pigment Nonylprodigiosin. J. Org. Chem. 1999, 64, 8275–8280.
Dairi, K.; Tripathy, S.; Attardo, G.; Lavallee, J. F. Two Step Synthesis of the Bipyrrole Precursor of Prodigiosins. Tetrahedron Lett. 2006, 47, 2605–2606.
Stanley, A. E.; Walton, L. J.; Kourdi Zerikly, M.; Corre, C.; Challis, G. L. Elucidation of the Streptomyces coelicolor Pathway to 4-Methoxy-2,2′-bipyrrole-5-carboxaldehyde, an Intermediate in Prodiginine Biosynthesis. Chem. Commun. (Camb.) 2006, 38, 3981–3983.
Mo, S. J.; Sydor, P. K.; Corre, C.; Alhamadsheh, M. M.; Stanley, A. E.; Haynes, S. W.; Song, L.; Reynolds, K. A.; Challis, G. L. Elucidation of the Streptomyces coelicolor Pathway to 2-Undecylpyrrole, a Key Intermediate in Undecylprodiginine and Streptorubin B Biosynthesis. Chem. Biol. 2008, 15, 137–148.
Odulate, O.; Barona-Gomez, F.; Corre, C.; Challis, G. L. Unpublished results.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. J. B.; Ortiz, V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, M. W.; Wong, W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 03; Gaussian Inc.: Pittsburgh, PA, 2003.
Becke, A. D. Density-Functional Thermochemistry: III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652
Perdew, J. P.; Wang, Y. Pair-Distribution Function and Its Coupling-Constant Average for the Spin-Polarized Electron Gas. Phys. Rev. B. 1992, 46, 12947.
Rajkarnikar, A.; Kwon, H. J.; Suh, J. W. Role of Adenosine Kinase in the Control of Streptomyces Differentiations: Loss of Adenosine Kinase Suppresses Sporulation and Actinorhodin Biosynthesis While Inducing Hyperproduction of Undecylprodigiosin in Streptomyces lividans. Biochem. Biophys. Res. Commun. 2007, 363, 322–328.
Sigsby, M. L.; Day, R. J.; Cooks, R. G. Fragmentation of Even Electron Ions: Protonated Ketones and Ethers. Org. Mass. Spectrom. 1979, 14, 273.
Fenselau, C.; Brown, P.; Patterson, D. G. Fragmentation of [M+H]+ to Form Ion Radicals Following Chemical Ionization. Spectroscopy (Amsterdam). 1983, 2, 348–351.
Bowie, J. H.; Stringer, M. B.; Duus, F.; Lawesson, S. O.; Larsson, F. C. V.; Madsen, J. O. Fragmentations of Organic Negative-Ions, Mercapto Acids and Esters: A Reinvestigation. Aust. J. Chem. 1984, 37, 1619–1624.
Nikolic, D.; Li, Y.; Chadwick, L. R.; Grubjesic, S.; Schwab, P.; Metz, P.; van Breemen, R.B. Metabolism of 8-Prenylnaringenin, a Potent Phytoestrogen from Hops (Humulus lupulus), by Human Liver Microsomes. Drug Metab. Dispos. 2004, 32, 272–279.
Levsen, K.; Schiebel, H. M.; Terlouw, J. K.; Jobst, K. J.; Elend, M.; Preiss, A.; Thiele, H.; Ingendoh, A. Even-Electron Ions: A Systematic Study of the Neutral Species Lost in the Dissociation of Quasi-Molecular Ions. J. Mass Spectrom. 2007, 42, 1024–1044.
Williams, J. P.; Nibbering, N. M.; Green, B. N.; Patel, V. J.; Scrivens, J. H. Collision-Induced Fragmentation Pathways Including Odd-Electron Ion Formation from Desorption Electrospray Ionisation Generated Protonated and Deprotonated Drugs Derived from Tandem Accurate Mass Spectrometry. J. Mass Spectrom. 2006, 41, 1277–1286.
Jeong, H.; Yim, J. H.; Lee, C.; Choi, S. H.; Park, Y. K.; Yoon, S. H.; Hur, C. G.; Kang, H. Y.; Kim, D.; Lee, H. H.; Park, K. H.; Park, S. H.; Park, H. S.; Lee, H. K.; Oh, T. K.; Kim, J. F. Genomic Blueprint of Hahella chejuensis, a Marine Microbe Producing an Algicidal Agent. Nucleic Acids Res. 2005, 33, 7066–7073.
Chen, K.; Lane, P.; Cai, Y.; Rees, B. B.; Challis, G. L.; Cole, R. B. Unusual Odd-Electron Fragments from Even-Electron Protonated Prodiginine Precursors Using Positive Ion Electrospray Tandem Mass Spectrometry. Proceedings of the 55th ASMS Conference on Mass Spectrometry and Allied Topics, Indianapolis IN, June 3–7, 2007.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published online August 9, 2008
Rights and permissions
About this article
Cite this article
Chen, K., Rannulu, N.S., Cai, Y. et al. Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 19, 1856–1866 (2008). https://doi.org/10.1016/j.jasms.2008.08.002
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1016/j.jasms.2008.08.002