Skip to main content

Low-temperature thermolysis behavior of tetramethyl- and tetraethyldistibines


The thermolysis behavior of tetramethyl- and tetraethyldistibine (Sb2Me4 and Sb2Et4) was investigated using a mass spectrometer coupled to a tubular flow reactor under near-chemical vapor deposition (CVD) conditions. Sb2Me4 undergoes a gas-phase disproportionation with an estimated activation energy of 163 kJ/mol. This reaction leads to the formation of methylstibinidine, SbMe, that reacts on the surface to produce antimony film and SbMe3. Unfortunately, this clean decomposition pathway is limited to a narrow temperature range of 300–350°C. At temperatures exceeding 400°C, SbMe3 decomposes following a radical route with a consequent risk of carbon contamination. In contrast, Sb2Et4 disproportionates at the hot wall of the reactor. According to mass-spectrometric data, this reaction is significant starting at a temperature of 100°C, with an apparent activation energy of 104 kJ/mol. Within the temperature range of 100–250°C, the precursor decomposition leads to the formation of antimony films and SbEt3, whereas different molecular reaction pathways are significantly activated above 250°C. The use of Sb2Et4 lowers the risk of carbon contamination compared to Sb2Me4 at high temperature. Therefore, Sb2Et4 is a promising CVD precursor for the growth of antimony films in the absence of hydrogen atmosphere in a wide temperature range.


  1. Snyder, G. J.; Toberer, E. S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114.

    CAS  Article  Google Scholar 

  2. Liu, T. X.; Tang, X. F.; Xie, W. J.; Yan, Y. P.; Zhang, Q. J. Crystal Structures and Thermoelectric Properties of Sm-Filled Skutterudite Compounds SmyFexCo4-xSb12. J. Rare Earths. 2007, 25, 739–743.

    Article  Google Scholar 

  3. Khandekar, A. A.; Yeh, J. Y.; Mawst, L. J.; Song, X.; Babcock, S. E.; Kuech, T. F. Effects of Ga- and Sb-Precursor Chemistry on the Alloy Composition in Pseudomorphically Strained GaAs1-ySby Films Grown via Metalorganic Vapor Phase Epitaxy. J. Crystal Growth. 2007, 303, 456–465.

    CAS  Article  Google Scholar 

  4. Cheng, X. C.; McGill, T. C. Molecular Beam Epitaxy Growth of Antimonide Avalanche Photodetectors with InAs/AlSb Superlattice as the n-Type Layer. J. Crystal Growth 2000, 208, 183–188.

    CAS  Article  Google Scholar 

  5. Flatte, M. E. Semiconductor Physics: Relativity on a Chip. Nature 2004, 427, 21–22.

    CAS  Article  Google Scholar 

  6. Deakin, L.; Mar, A. Magnetic Properties and Magnetoresistance of GdCrSb3. Chem. Mater. 2003, 15, 3343–3346.

    CAS  Article  Google Scholar 

  7. Gratzel, M. Materials Science: Ultrafast Colour Displays. Nature 2001, 409, 575–576.

    CAS  Article  Google Scholar 

  8. Todd, M. A.; Bandari, G.; Baum, T. H. Synthesis and Stabilization of Stibine for Low-Temperature Chemical Vapor Deposition of Carbon-Free Antimony Films. Chem. Mater. 1999, 11, 547–551.

    CAS  Article  Google Scholar 

  9. Behet, M.; Stoll, B.; Heime, K. Composition-Study on the Low-Pressure Metalorganic Vapor-Phase Epitaxial-Growth of InSb on GaAs with Trimethylantimony and Triethylantimony as Sb Precursor. J. Crystal Growth 1994, 135, 434–440.

    CAS  Article  Google Scholar 

  10. Egan, R. J.; Chin, V. W. L.; Tansley, T. L. Growth, Morphology and Electrical-Transport Properties of MOCVD-Grown P-InSb. Semicond. Sci. Technol. 1994, 9, 1591–1597.

    CAS  Article  Google Scholar 

  11. Dickson, R. S.; Heazle, K. D.; Pain, G. N.; Deacon, G. B.; West, B. O.; Fallon, G. D.; Rowe, R. S.; Leech, P. W.; Faith, M. Antimony Sources for MOCVD: The Use of Et4Sb2 as a P-Type Dopant for Hg1-xCdxTe and Crystal Structure of the Adduct [Et4Sb2·2CdI2]. J. Organomet. Chem. 1993, 449, 131–139.

    CAS  Article  Google Scholar 

  12. Pain, G. N. Method for the Deposition of Group 15 and/or Group 16 Elements 1992. WO Patent/1992/009719.

  13. Schulz, S. The Chemistry of Group 13/15 Compounds (III–V Compounds) with the Higher Homologues of Group 15, Sb and Bi. Coord. Chem. Rev. 2001, 215, 1–37.

    CAS  Article  Google Scholar 

  14. Skulan, A. J.; Nielsen, I. M. B.; Melius, C. F.; Allendorf, M. D. BAC-MP4 Predictions of Thermochemistry for Gas-Phase Antimony Compounds in the Sb-H-C-O-Cl system. J. Phys. Chem. A. 2006, 110, 5919–5928.

    CAS  Article  Google Scholar 

  15. Leech, P. W.; Heazle, K. D.; Deacon, G. B.; Dickson, R. S.; West, B. O.; Faith, M.; Frost, C. R. p-Type Doping of Hg0.4Cd0.6Te Using Et4Sb2. J. Crystal Growth. 1994, 139, 247–250.

    CAS  Article  Google Scholar 

  16. Breunig, H. J.; Breuniglyriti, V.; Knobloch, T. P. Simple Synthesis of Tetramethyldistibane and Tetraethyldistibane. Chem.-Ztg. 1977, 101, 399–400.

    CAS  Google Scholar 

  17. Meinema, H. A.; Martens, H. F.; Noltes, J. G. Investigations on Organoantimony Compounds: 9. Antimony—Carbon Bond Cleavage in Trialkylstibines by Sodium in Liquid-Ammonia—Synthetic Applications of Dialkylstibines by Sodium and Diphenylstibylsodium. J. Organomet. Chem. 1973, 51, 223–230.

    CAS  Article  Google Scholar 

  18. Schulz, S.; Fahrenholz, S.; Kuczkowski, A.; Assenmacher, W.; Seemayer, A.; Hommes, A.; Wandelt, W. Deposition of GaSb films from the single-source precursor [t-Bu2GaSbEt2](2). Chem. Mater. 2005, 17, 1982–1989.

    CAS  Article  Google Scholar 

  19. Schulz, S.; Fahrenholz, S.; Schuchmann, D.; Kuczkowski, A.; Assenmacher, W.; Reilmann, F.; Bahlawane, N.; Kohse-Höinghaus, K. Single source precursor-based HV-MOCVD deposition of binary group 1 13-antimonide thin films. Surf. Coat. Technol. 2007, 201, 9071–9075.

    CAS  Article  Google Scholar 

  20. Haase, T.; Kohse-Hoinghaus, K.; Bahlawane, N.; Djiele, P.; Jakob, A.; Lang, H. CVD with Tri-(n)butylphosphine Silver(I) Complexes: Mass Spectrometric Investigations and Depositions. Chem. Vapor Deposit. 2005, 11, 195–205.

    CAS  Article  Google Scholar 

  21. Bahlawane, N.; Reilmann, F.; Salameh, L.-C.; Kohse-Hoinghaus, K. Mass-Spectrometric Monitoring of the Thermally Induced Decomposition of Trimethylgallium, Tris(tert-butyl)gallium and Triethylantimony at Low-Pressure Conditions. J. Am. Soc. Mass Spectrom. 2008, 19, 947–954.

    CAS  Article  Google Scholar 

  22. Breunig, H.; Kruger, T.; Lork, E. Oxidation of Tetraaryldistibanes: Syntheses and Crystal Structures of Diarylantimony Oxides and Peroxides, (R2Sb)2O, (R2Sb)4O-6 and (R2SbO)(4)(O-2)(2) (R = Ph, o-Tol, p-Tol). J. Organomet. Chem. 2002, 648, 209–213.

    CAS  Article  Google Scholar 

  23. Jackson, D. A. Influence of Carrier Gases on Pyrolysis of Organometallics. J. Crystal Growth 1989, 94, 459–468.

    CAS  Article  Google Scholar 

  24. Larsen, C. A.; Li, S. H.; Stringfellow, G. B. Decomposition Mechanisms of Trimethylantimony and Reactions with Trimethylindium. Chem. Mater. 1991, 3, 39–44.

    CAS  Article  Google Scholar 

  25. Svoboda, G. D.; Gleaves, J. T.; Mills, P. L. New Method for Studying the Pyrolysis of VPE CVD Precursors under Vacuum Conditions: Application to Trimethylantimony and Tetramethyltin. Ind. Eng. Chem. Res. 1992, 31, 19–29.

    CAS  Article  Google Scholar 

  26. Berrigan, R. A.; Metson, J. B.; Russell, D. K. Radical and Molecular Processes in the Thermal Decomposition of Trimethyl and Triethyl Stibines. Chem. Vapor Deposit. 1998, 4, 23–28.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Naoufal Bahlawane.

Additional information

Published online June 27, 2008

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bahlawane, N., Reilmann, F., Schulz, S. et al. Low-temperature thermolysis behavior of tetramethyl- and tetraethyldistibines. J Am Soc Mass Spectrom 19, 1336–1342 (2008).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Chemical Vapor Deposition
  • Antimony
  • Thermolysis
  • GaSb
  • Carbon Contamination