Snyder, G. J.; Toberer, E. S. Complex Thermoelectric Materials. Nat. Mater.
2008, 7, 105–114.
CAS
Article
Google Scholar
Liu, T. X.; Tang, X. F.; Xie, W. J.; Yan, Y. P.; Zhang, Q. J. Crystal Structures and Thermoelectric Properties of Sm-Filled Skutterudite Compounds SmyFexCo4-xSb12. J. Rare Earths.
2007, 25, 739–743.
Article
Google Scholar
Khandekar, A. A.; Yeh, J. Y.; Mawst, L. J.; Song, X.; Babcock, S. E.; Kuech, T. F. Effects of Ga- and Sb-Precursor Chemistry on the Alloy Composition in Pseudomorphically Strained GaAs1-ySby Films Grown via Metalorganic Vapor Phase Epitaxy. J. Crystal Growth.
2007, 303, 456–465.
CAS
Article
Google Scholar
Cheng, X. C.; McGill, T. C. Molecular Beam Epitaxy Growth of Antimonide Avalanche Photodetectors with InAs/AlSb Superlattice as the n-Type Layer. J. Crystal Growth
2000, 208, 183–188.
CAS
Article
Google Scholar
Flatte, M. E. Semiconductor Physics: Relativity on a Chip. Nature
2004, 427, 21–22.
CAS
Article
Google Scholar
Deakin, L.; Mar, A. Magnetic Properties and Magnetoresistance of GdCrSb3. Chem. Mater.
2003, 15, 3343–3346.
CAS
Article
Google Scholar
Gratzel, M. Materials Science: Ultrafast Colour Displays. Nature
2001, 409, 575–576.
CAS
Article
Google Scholar
Todd, M. A.; Bandari, G.; Baum, T. H. Synthesis and Stabilization of Stibine for Low-Temperature Chemical Vapor Deposition of Carbon-Free Antimony Films. Chem. Mater.
1999, 11, 547–551.
CAS
Article
Google Scholar
Behet, M.; Stoll, B.; Heime, K. Composition-Study on the Low-Pressure Metalorganic Vapor-Phase Epitaxial-Growth of InSb on GaAs with Trimethylantimony and Triethylantimony as Sb Precursor. J. Crystal Growth
1994, 135, 434–440.
CAS
Article
Google Scholar
Egan, R. J.; Chin, V. W. L.; Tansley, T. L. Growth, Morphology and Electrical-Transport Properties of MOCVD-Grown P-InSb. Semicond. Sci. Technol.
1994, 9, 1591–1597.
CAS
Article
Google Scholar
Dickson, R. S.; Heazle, K. D.; Pain, G. N.; Deacon, G. B.; West, B. O.; Fallon, G. D.; Rowe, R. S.; Leech, P. W.; Faith, M. Antimony Sources for MOCVD: The Use of Et4Sb2 as a P-Type Dopant for Hg1-xCdxTe and Crystal Structure of the Adduct [Et4Sb2·2CdI2]. J. Organomet. Chem.
1993, 449, 131–139.
CAS
Article
Google Scholar
Pain, G. N. Method for the Deposition of Group 15 and/or Group 16 Elements 1992. WO Patent/1992/009719.
Schulz, S. The Chemistry of Group 13/15 Compounds (III–V Compounds) with the Higher Homologues of Group 15, Sb and Bi. Coord. Chem. Rev.
2001, 215, 1–37.
CAS
Article
Google Scholar
Skulan, A. J.; Nielsen, I. M. B.; Melius, C. F.; Allendorf, M. D. BAC-MP4 Predictions of Thermochemistry for Gas-Phase Antimony Compounds in the Sb-H-C-O-Cl system. J. Phys. Chem. A.
2006, 110, 5919–5928.
CAS
Article
Google Scholar
Leech, P. W.; Heazle, K. D.; Deacon, G. B.; Dickson, R. S.; West, B. O.; Faith, M.; Frost, C. R. p-Type Doping of Hg0.4Cd0.6Te Using Et4Sb2. J. Crystal Growth.
1994, 139, 247–250.
CAS
Article
Google Scholar
Breunig, H. J.; Breuniglyriti, V.; Knobloch, T. P. Simple Synthesis of Tetramethyldistibane and Tetraethyldistibane. Chem.-Ztg.
1977, 101, 399–400.
CAS
Google Scholar
Meinema, H. A.; Martens, H. F.; Noltes, J. G. Investigations on Organoantimony Compounds: 9. Antimony—Carbon Bond Cleavage in Trialkylstibines by Sodium in Liquid-Ammonia—Synthetic Applications of Dialkylstibines by Sodium and Diphenylstibylsodium. J. Organomet. Chem.
1973, 51, 223–230.
CAS
Article
Google Scholar
Schulz, S.; Fahrenholz, S.; Kuczkowski, A.; Assenmacher, W.; Seemayer, A.; Hommes, A.; Wandelt, W. Deposition of GaSb films from the single-source precursor [t-Bu2GaSbEt2](2). Chem. Mater.
2005, 17, 1982–1989.
CAS
Article
Google Scholar
Schulz, S.; Fahrenholz, S.; Schuchmann, D.; Kuczkowski, A.; Assenmacher, W.; Reilmann, F.; Bahlawane, N.; Kohse-Höinghaus, K. Single source precursor-based HV-MOCVD deposition of binary group 1 13-antimonide thin films. Surf. Coat. Technol.
2007, 201, 9071–9075.
CAS
Article
Google Scholar
Haase, T.; Kohse-Hoinghaus, K.; Bahlawane, N.; Djiele, P.; Jakob, A.; Lang, H. CVD with Tri-(n)butylphosphine Silver(I) Complexes: Mass Spectrometric Investigations and Depositions. Chem. Vapor Deposit.
2005, 11, 195–205.
CAS
Article
Google Scholar
Bahlawane, N.; Reilmann, F.; Salameh, L.-C.; Kohse-Hoinghaus, K. Mass-Spectrometric Monitoring of the Thermally Induced Decomposition of Trimethylgallium, Tris(tert-butyl)gallium and Triethylantimony at Low-Pressure Conditions. J. Am. Soc. Mass Spectrom.
2008, 19, 947–954.
CAS
Article
Google Scholar
Breunig, H.; Kruger, T.; Lork, E. Oxidation of Tetraaryldistibanes: Syntheses and Crystal Structures of Diarylantimony Oxides and Peroxides, (R2Sb)2O, (R2Sb)4O-6 and (R2SbO)(4)(O-2)(2) (R = Ph, o-Tol, p-Tol). J. Organomet. Chem.
2002, 648, 209–213.
CAS
Article
Google Scholar
Jackson, D. A. Influence of Carrier Gases on Pyrolysis of Organometallics. J. Crystal Growth
1989, 94, 459–468.
CAS
Article
Google Scholar
Larsen, C. A.; Li, S. H.; Stringfellow, G. B. Decomposition Mechanisms of Trimethylantimony and Reactions with Trimethylindium. Chem. Mater.
1991, 3, 39–44.
CAS
Article
Google Scholar
Svoboda, G. D.; Gleaves, J. T.; Mills, P. L. New Method for Studying the Pyrolysis of VPE CVD Precursors under Vacuum Conditions: Application to Trimethylantimony and Tetramethyltin. Ind. Eng. Chem. Res.
1992, 31, 19–29.
CAS
Article
Google Scholar
Berrigan, R. A.; Metson, J. B.; Russell, D. K. Radical and Molecular Processes in the Thermal Decomposition of Trimethyl and Triethyl Stibines. Chem. Vapor Deposit.
1998, 4, 23–28.
CAS
Article
Google Scholar