Abstract
The thermolysis behavior of tetramethyl- and tetraethyldistibine (Sb2Me4 and Sb2Et4) was investigated using a mass spectrometer coupled to a tubular flow reactor under near-chemical vapor deposition (CVD) conditions. Sb2Me4 undergoes a gas-phase disproportionation with an estimated activation energy of 163 kJ/mol. This reaction leads to the formation of methylstibinidine, SbMe, that reacts on the surface to produce antimony film and SbMe3. Unfortunately, this clean decomposition pathway is limited to a narrow temperature range of 300–350°C. At temperatures exceeding 400°C, SbMe3 decomposes following a radical route with a consequent risk of carbon contamination. In contrast, Sb2Et4 disproportionates at the hot wall of the reactor. According to mass-spectrometric data, this reaction is significant starting at a temperature of 100°C, with an apparent activation energy of 104 kJ/mol. Within the temperature range of 100–250°C, the precursor decomposition leads to the formation of antimony films and SbEt3, whereas different molecular reaction pathways are significantly activated above 250°C. The use of Sb2Et4 lowers the risk of carbon contamination compared to Sb2Me4 at high temperature. Therefore, Sb2Et4 is a promising CVD precursor for the growth of antimony films in the absence of hydrogen atmosphere in a wide temperature range.
Article PDF
Similar content being viewed by others
References
Snyder, G. J.; Toberer, E. S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114.
Liu, T. X.; Tang, X. F.; Xie, W. J.; Yan, Y. P.; Zhang, Q. J. Crystal Structures and Thermoelectric Properties of Sm-Filled Skutterudite Compounds SmyFexCo4-xSb12. J. Rare Earths. 2007, 25, 739–743.
Khandekar, A. A.; Yeh, J. Y.; Mawst, L. J.; Song, X.; Babcock, S. E.; Kuech, T. F. Effects of Ga- and Sb-Precursor Chemistry on the Alloy Composition in Pseudomorphically Strained GaAs1-ySby Films Grown via Metalorganic Vapor Phase Epitaxy. J. Crystal Growth. 2007, 303, 456–465.
Cheng, X. C.; McGill, T. C. Molecular Beam Epitaxy Growth of Antimonide Avalanche Photodetectors with InAs/AlSb Superlattice as the n-Type Layer. J. Crystal Growth 2000, 208, 183–188.
Flatte, M. E. Semiconductor Physics: Relativity on a Chip. Nature 2004, 427, 21–22.
Deakin, L.; Mar, A. Magnetic Properties and Magnetoresistance of GdCrSb3. Chem. Mater. 2003, 15, 3343–3346.
Gratzel, M. Materials Science: Ultrafast Colour Displays. Nature 2001, 409, 575–576.
Todd, M. A.; Bandari, G.; Baum, T. H. Synthesis and Stabilization of Stibine for Low-Temperature Chemical Vapor Deposition of Carbon-Free Antimony Films. Chem. Mater. 1999, 11, 547–551.
Behet, M.; Stoll, B.; Heime, K. Composition-Study on the Low-Pressure Metalorganic Vapor-Phase Epitaxial-Growth of InSb on GaAs with Trimethylantimony and Triethylantimony as Sb Precursor. J. Crystal Growth 1994, 135, 434–440.
Egan, R. J.; Chin, V. W. L.; Tansley, T. L. Growth, Morphology and Electrical-Transport Properties of MOCVD-Grown P-InSb. Semicond. Sci. Technol. 1994, 9, 1591–1597.
Dickson, R. S.; Heazle, K. D.; Pain, G. N.; Deacon, G. B.; West, B. O.; Fallon, G. D.; Rowe, R. S.; Leech, P. W.; Faith, M. Antimony Sources for MOCVD: The Use of Et4Sb2 as a P-Type Dopant for Hg1-xCdxTe and Crystal Structure of the Adduct [Et4Sb2·2CdI2]. J. Organomet. Chem. 1993, 449, 131–139.
Pain, G. N. Method for the Deposition of Group 15 and/or Group 16 Elements 1992. WO Patent/1992/009719.
Schulz, S. The Chemistry of Group 13/15 Compounds (III–V Compounds) with the Higher Homologues of Group 15, Sb and Bi. Coord. Chem. Rev. 2001, 215, 1–37.
Skulan, A. J.; Nielsen, I. M. B.; Melius, C. F.; Allendorf, M. D. BAC-MP4 Predictions of Thermochemistry for Gas-Phase Antimony Compounds in the Sb-H-C-O-Cl system. J. Phys. Chem. A. 2006, 110, 5919–5928.
Leech, P. W.; Heazle, K. D.; Deacon, G. B.; Dickson, R. S.; West, B. O.; Faith, M.; Frost, C. R. p-Type Doping of Hg0.4Cd0.6Te Using Et4Sb2. J. Crystal Growth. 1994, 139, 247–250.
Breunig, H. J.; Breuniglyriti, V.; Knobloch, T. P. Simple Synthesis of Tetramethyldistibane and Tetraethyldistibane. Chem.-Ztg. 1977, 101, 399–400.
Meinema, H. A.; Martens, H. F.; Noltes, J. G. Investigations on Organoantimony Compounds: 9. Antimony—Carbon Bond Cleavage in Trialkylstibines by Sodium in Liquid-Ammonia—Synthetic Applications of Dialkylstibines by Sodium and Diphenylstibylsodium. J. Organomet. Chem. 1973, 51, 223–230.
Schulz, S.; Fahrenholz, S.; Kuczkowski, A.; Assenmacher, W.; Seemayer, A.; Hommes, A.; Wandelt, W. Deposition of GaSb films from the single-source precursor [t-Bu2GaSbEt2](2). Chem. Mater. 2005, 17, 1982–1989.
Schulz, S.; Fahrenholz, S.; Schuchmann, D.; Kuczkowski, A.; Assenmacher, W.; Reilmann, F.; Bahlawane, N.; Kohse-Höinghaus, K. Single source precursor-based HV-MOCVD deposition of binary group 1 13-antimonide thin films. Surf. Coat. Technol. 2007, 201, 9071–9075.
Haase, T.; Kohse-Hoinghaus, K.; Bahlawane, N.; Djiele, P.; Jakob, A.; Lang, H. CVD with Tri-(n)butylphosphine Silver(I) Complexes: Mass Spectrometric Investigations and Depositions. Chem. Vapor Deposit. 2005, 11, 195–205.
Bahlawane, N.; Reilmann, F.; Salameh, L.-C.; Kohse-Hoinghaus, K. Mass-Spectrometric Monitoring of the Thermally Induced Decomposition of Trimethylgallium, Tris(tert-butyl)gallium and Triethylantimony at Low-Pressure Conditions. J. Am. Soc. Mass Spectrom. 2008, 19, 947–954.
Breunig, H.; Kruger, T.; Lork, E. Oxidation of Tetraaryldistibanes: Syntheses and Crystal Structures of Diarylantimony Oxides and Peroxides, (R2Sb)2O, (R2Sb)4O-6 and (R2SbO)(4)(O-2)(2) (R = Ph, o-Tol, p-Tol). J. Organomet. Chem. 2002, 648, 209–213.
Jackson, D. A. Influence of Carrier Gases on Pyrolysis of Organometallics. J. Crystal Growth 1989, 94, 459–468.
Larsen, C. A.; Li, S. H.; Stringfellow, G. B. Decomposition Mechanisms of Trimethylantimony and Reactions with Trimethylindium. Chem. Mater. 1991, 3, 39–44.
Svoboda, G. D.; Gleaves, J. T.; Mills, P. L. New Method for Studying the Pyrolysis of VPE CVD Precursors under Vacuum Conditions: Application to Trimethylantimony and Tetramethyltin. Ind. Eng. Chem. Res. 1992, 31, 19–29.
Berrigan, R. A.; Metson, J. B.; Russell, D. K. Radical and Molecular Processes in the Thermal Decomposition of Trimethyl and Triethyl Stibines. Chem. Vapor Deposit. 1998, 4, 23–28.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published online June 27, 2008
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Bahlawane, N., Reilmann, F., Schulz, S. et al. Low-temperature thermolysis behavior of tetramethyl- and tetraethyldistibines. J Am Soc Mass Spectrom 19, 1336–1342 (2008). https://doi.org/10.1016/j.jasms.2008.06.009
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1016/j.jasms.2008.06.009