Gas-phase formation of large neutral alkaline-earth metal tryptophan complexes

  • Markus Marksteiner
  • Philipp Haslinger
  • Hendrik Ulbricht
  • Michele Sclafani
  • Harald Oberhofer
  • Christoph Dellago
  • Markus ArndtEmail author


We report on the first observation of isolated large neutral metal amino acid complexes such as Trp n Me k , with Me = Ca, Ba, Sr, cluster combinations covering n = 1–33, k = 0..2 and masses beyond 6500 u. The cluster beam is generated using UV laser desorption from a mixed powder of alkaline-earth metal salts and tryptophan inside a cluster mixing channel. The particles are detected using VUV photoionization followed by time-of-flight mass spectroscopy. The enhanced stability of metal amino acid clusters over pure amino acid clusters is substantiated in molecular dynamics simulations by determining the gain in binding energy related to the inclusion of the metal atoms.


Cluster Size Distribution Calcium Atom CHARMM Force Field Amino Acid Cluster Tryptophan Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grotemeyer, J.; Bosel, U.; Walter, K.; Schlag, E. W. A General Soft Ionization Method for Mass Spectrometry: Resonance Enhanced Multi-Phonon Ionization of Biomolecules. J. Am. Chem. Soc. 1986, 21, 645–653.Google Scholar
  2. 2.
    Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.CrossRefGoogle Scholar
  3. 3.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Mass Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  4. 4.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science. 1989, 246, 64–71.CrossRefGoogle Scholar
  5. 5.
    Schalley, C. A. Molecular Recognition and Supramolecular Chemistry in the Gas Phase. Mass Spectrom. Rev. 2001, 20, 253–309.CrossRefGoogle Scholar
  6. 6.
    Arndt, M.; Nairz, O.; Voss-Andreae, J.; Keller, C.; G. van der Zouw, G.; Zeilinger, A. Wave-Particle Duality of C60 Molecules. Nature. 1999, 401, 680–682.CrossRefGoogle Scholar
  7. 7.
    Hackermüller, L.; Uttenthaler, S.; Hornberger, K.; Reiger, E.; Brezger, B.; Zeilinger, A.; Arndt, M. Wave Nature of Biomolecules and Fluorofullerenes. Phys. Rev. Lett. 2003, 91, 90408–90412.CrossRefGoogle Scholar
  8. 8.
    Gerlich, S.; Hackermüller, L.; Hornberger, K.; Stibor, A.; Ulbricht, H.; Gring, M.; Goldfarb, F.; Savas, T.; Müri, M.; Mayor, M.; Arndt, M. A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules. Nat. Phys. 2007, 3, 711–715.CrossRefGoogle Scholar
  9. 9.
    Marksteiner, M.; Kiesewetter, G.; Hackermüller, L.; Ulbricht, H.; Arndt, M. Cold Beams of Biomolecules for Quantum Optics. Acta Phys. Hung. 2007, B 26/12, 87–94.Google Scholar
  10. 10.
    Antoine, R.; Dugourd, P.; Rayane, D.; Benichou, E.; Broyer, M.; Chandezon, F.; Guet, C. Direct Measurement of the Electric Polarizability of Isolated C60 Molecules. J. Chem. Phys. 1999, 110, 9771–9772.CrossRefGoogle Scholar
  11. 11.
    Berninger, M.; Stefanov, A.; Deachapunya, S.; Arndt, M. Polarizability Measurements in a Molecule Near-Field Interferometer. Phys. Rev. A. 2007, 76, 013607–013611.CrossRefGoogle Scholar
  12. 12.
    Deachapunya, S.; Fagan, P. J.; Major, A. G.; Reiger, E.; Ritsch, H.; Stefanov, A.; Ulbricht, H.; Arndt, M. Slow Beams of Massive Molecules. Eur. Phys. J. D. 2007, 46, 307–313.CrossRefGoogle Scholar
  13. 13.
    Stillinger, F. H.; Weber, T. A. Packing Structures and Transitions in Liquids and Solids. Science. 1984, 225, 983–989.CrossRefGoogle Scholar
  14. 14.
    de Broglie, L. Waves and Quanta. Nature. 1923, 112, 540.CrossRefGoogle Scholar
  15. 15.
    Mühlberger, F.; Wieser, J.; Morozov, A.; Ulrich, A.; Zimmermann, R. Single-Photon Ionization Quadrupole Mass Spectrometr with an Electron Beam Pumped Excimer Light Source. Anal. Chem. 2005, 77, 2218–2226.CrossRefGoogle Scholar
  16. 16.
    Arps, J.; Chen, C. H.; Mccann, M. P.; Datskou, I. Ionization of Organic Molecules Using Coherent Vacuum Ultraviolet Light. Appl. Spectroc. 1989, 43, 1211–1214.CrossRefGoogle Scholar
  17. 17.
    Hanley, L.; Edirisinghe, P. D.; Calaway, W. F.; Veryovkin, I. V.; Pellin, M. J.; Moore, J. F. 7.87 eV Postionization of Peptides Containing Tryptophan or Derivatized with Fluorescein. App. Surf. Sci. 2006, 252, 6723–6726.CrossRefGoogle Scholar
  18. 18.
    Aicher, K. P.; Wilhelm, U.; Grotemeyer, J. Multiphoton Ionization of Molecules: A Comparison Between Femtosecond and Nanosecond Laser Pulse Ionization Efficiency. J. Am. Soc. Mass Spectrom. 1995, 6, 1059–1068.CrossRefGoogle Scholar
  19. 19.
    Ding, D.; Huang, J.; Compton, R. N.; Klots, C. E.; Haufler, R. E. CW Laser Ionization of C60 and C70. Phys. Rev. Lett. 1994, 73, 1084–1087.CrossRefGoogle Scholar
  20. 20.
    Schlag, E.; Grotemeyer, J.; Levine, R. Do Large Molecules Ionize?. Chem. Phys. Lett. 1992, 190, 521–527.CrossRefGoogle Scholar
  21. 21.
    Becker, C. H.; Wu, K. J. On the Photoionization of Large Molecules. J. Am. Soc. Mass Spectrom. 1995, 6, 883–888.CrossRefGoogle Scholar
  22. 22.
    Dey, M.; Grotemeye, J. Cluster form of Biomolecules in the Gas Phase. Eur. Mass Spectrom. 1995, 6, 95–103.CrossRefGoogle Scholar
  23. 23.
    Kim, N. J.; Kang, H.; Jeong, G.; Kim, Y. S.; Lee, K. T.; Kim, S. K. Anomalous Fragmentation of Hydrated Clusters of DNA Base Adenine in UV Photoionization. J. Phys. Chem. A. 2000, 104, 6552–6557.CrossRefGoogle Scholar
  24. 24.
    Denifl, S.; Zappa, F.; Mähr, I.; Lecointre, J.; Probst, M.; Märk, T. D.; Scheier, P. Mass Spectrometric Investigation of Anions Formed Upon Free Electron Attachment to Nucleobase Molecules and Clusters Embedded in Superfluid Helium Droplets. Phys. Rev. Lett. 2006, 97, 043201–043204.CrossRefGoogle Scholar
  25. 25.
    Dunbar, R. C.; Polfer, N. C.; Oomens, J. Gas-Phase Zwitterion Stabilization by a Metal Dication. J. Am. Chem. Soc. 2007, 129, 14562–14563.CrossRefGoogle Scholar
  26. 26.
    Hu, P.; Gross, M. Gas-Phase Interaction of Transition-Metal Ions and Di- and Tripeptides: A Comparison with Alkaline-Earth-Metal-Ion Interactions. J. Am. Chem. Soc. 1993, 115, 8821–8828.CrossRefGoogle Scholar
  27. 27.
    Jurchen, J. C.; Garcia, D. E.; Williams, E. R. Gas-Phase Dissociation Pathways of Multiply Charged Peptide Clusters. J. Am. Soc. Mass Spectrom. 2003, 14, 1373–1386.CrossRefGoogle Scholar
  28. 28.
    Ryzhov, V.; Dunbar, R. C.; Cerda, B.; Wesdemiotis, C. Cation-π Effects in the Complexation of Na+ and K+ with Phe, Tyr, and Trp in the Gas Phase. J. Am. Soc. Mass Spectrom. 2000, 11, 1037–1046.CrossRefGoogle Scholar
  29. 29.
    Schanen, P.; Yang, D.; Weinkauf, R.; Schlag, E. Efficient Cationization by Cs + Adduct Ion Formation in a Supersonic Beam. Int. J. Mass Spectrom. Ion Processes. 1997, 167/168, 447–470.CrossRefGoogle Scholar
  30. 30.
    Axelsson, J.; Scrivener, E.; Haddleton, D. M.; Derrick, P. J. Mass Discrimination Effects in an Ion Detector and Other Causes for Shifts in Polymer Mass Distributions Measured by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Macromolecules. 1996, 29, 8875–8882.CrossRefGoogle Scholar
  31. 31.
    Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Neal, P.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. NAMD2: Greater Scalability for Parallel Molecular Dynamics. J. Comp. Phys. 1999, 151, 283–312.CrossRefGoogle Scholar
  32. 32.
    MacKerell, A. Jr.; Feig, M.; Brooks, C. III. Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1445.CrossRefGoogle Scholar
  33. 33.
    MacKerell, A. D. Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. Jr.; Evanseck, J.; Field, M.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E. III; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B. 1998, 102, 3586–3616.CrossRefGoogle Scholar
  34. 34.
    CPMD Version 3.11.1, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001.Google Scholar
  35. 35.
    Lee, S. K.; Polyakova, Y.; Row, K. H. Interrelation of Retention Factor of Amino-Acids by QSPR and Linear Regression. Bull. Korean Chem. Soc. 2003, 24, 1757–1762.CrossRefGoogle Scholar
  36. 36.
    Kamariotis, A.; Boyarkin, O. V.; Mercier, S. R.; Beck, R. D.; Bush, M. F.; Williams, E. R.; Rizzo, T. R. Infrared Spectroscopy of Hydrated Amino Acids in the Gas Phase: Protonated and Lithiated Valine. J. Am. Chem. Soc. 2006, 128, 905–916.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Markus Marksteiner
    • 1
  • Philipp Haslinger
    • 1
  • Hendrik Ulbricht
    • 1
  • Michele Sclafani
    • 1
  • Harald Oberhofer
    • 1
  • Christoph Dellago
    • 1
  • Markus Arndt
    • 1
    Email author
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations