Advertisement

Surface-assisted laser desorption/ionization mass spectrometry on titania nanotube arrays

  • Chun-Yuan Lo
  • Jia-Yi Lin
  • Wei-Yu Chen
  • Cheng-Tai Chen
  • Yu-Chie Chen
Article

Abstract

Titania nanotube arrays (NTA) generated from anodizing processes are tested as the substrate for surface-assisted laser desorption/ionization mass spectrometry (SALDI MS). The background generated from titania NTA is very low, making the approach suitable for the analysis of small molecules. The upper detectable mass is ∼29 kDa. Homogeneous sample deposition leads to good shot-to-shot reproducibility and suitability for quantitative analysis. Additionally, phosphopeptides can be selectively trapped on the titania NTA substrate, as illustrated by simply depositing a tryptic digest of β-casein followed by titania NTA SALDI MS analysis. The detection limit for small organics and peptides is in low fmol.

Keywords

Porous Silicon Melittin Active Carbon Powder Small Organic Ammonium Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57, 2935–2939.CrossRefGoogle Scholar
  2. 2.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  3. 3.
    Tanaka, M.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, T. Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.CrossRefGoogle Scholar
  4. 4.
    Sunner, J.; Dratz, E.; Chen, Y.-C. Graphite Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Peptides and Proteins from Liquid Solutions. Anal. Chem. 1995, 67, 4335–4342.CrossRefGoogle Scholar
  5. 5.
    Chen, Y.-C.; Shiea, J.; Sunner, J. Thin-Layer Chromatography-Mass Spectrometry Using Activated Carbon, Surface-Assisted Laser Desorption/Ionization. J. Chromatogr. A. 1998, 826, 77–86.CrossRefGoogle Scholar
  6. 6.
    Chen, Y.-C. In Situ Determination of Organic Reaction Products by Combining Thin Layer Chromatography with Surface-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 821–825.CrossRefGoogle Scholar
  7. 7.
    Chen, Y.-C.; Tsai, M.-F. Using Surfactants to Enhance the Analyte Signals in Activated Carbon, Surface-Assisted Laser Desorption/Ionization (SALDI) Mass Spectrometry. J. Mass Spectrom. 2000, 35, 1278–1284.CrossRefGoogle Scholar
  8. 8.
    Chen, Y.-C.; Tsai, M.-F. Sensitivity Enhancement for Nitrophenols Using Cationic Surfactant-Modified Activated Carbon for Solid-Phase Extraction Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2300–2304.CrossRefGoogle Scholar
  9. 9.
    Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J. On the Mechanism of Laser-Induced Desorption-Ionization of Organic Compounds from Etched Silicon and Carbon Surfaces. J. Chem. Phys. 2001, 115, 1891–1901.CrossRefGoogle Scholar
  10. 10.
    Okuno, S.; Arakawa, R.; Okamoto, K.; Matsui, Y.; Seki, S.; Kozawa, T.; Tagawa, S.; Wada, Y. Requirements for Laser-Induced Desorption/Ionization on Submicrometer Structures. Anal. Chem. 2005, 77, 5364–5369.CrossRefGoogle Scholar
  11. 11.
    Chen, Y.-C.; Wu, J.-Y. Analysis of Small Organics on Planar Silica Surfaces Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1899–1903.CrossRefGoogle Scholar
  12. 12.
    Xu, S.; Li, Y.; Zou, H.; Qiz, J.; Guo, Z.; Guo, B. Carbon Nanotubes as Assisted Matrix for Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Chem. 2003, 75, 6191–6195.CrossRefGoogle Scholar
  13. 13.
    Chen, W.-Y.; Wang, L.-S.; Chiu, H.-T.; Chen, Y.-C.; Lee, C.-Y. Carbon Nanotubes as Affinity Probes for Peptides and Proteins in MALDI MS Analysis. J. Am. Soc. Mass Spectrom. 2004, 15, 1629–1635.CrossRefGoogle Scholar
  14. 14.
    Ren, S.-F.; Zhang, L.; Cheng, Z.-H.; Guo, Y.-L. Immobilized Carbon Nanotubes as Matrix for MALDI-TOF-MS Analysis: Applications to Neutral Small Carbohydrates. J. Am. Soc. Mass Spectrom. 2005, 16, 333–339.CrossRefGoogle Scholar
  15. 15.
    Chen, W.-Y.; Chen, Y.-C. Reducing the Alkali Cation Adductions of Oligonucleotides Using Sol-Gel-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2003, 75, 4223–4228.CrossRefGoogle Scholar
  16. 16.
    Chen, C.-T.; Chen, Y.-C. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2005, 77, 5912–5919.CrossRefGoogle Scholar
  17. 17.
    Dale, M. J.; Knochenumss, R.; Zenobi, R. Graphite/Liquid Mixed Matrices for Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 1996, 68, 3321–3329.CrossRefGoogle Scholar
  18. 18.
    Dale, M. J.; Knochenumss, R.; Zenobi, R. Two-Phase Matrix-Assisted Laser Desorption/Ionization: Matrix Selection and Sample Pretreatment for Complex Anionic Analytes. Rapid Commun. Mass Spectrom. 1997, 11, 136–142.CrossRefGoogle Scholar
  19. 19.
    Zhang, Q.; Zou, H.; Guo, Z.; Zhang, A. Z.; Chen, X.; Ni, J. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Porous Silicon and Silica Gel as Matrix. Rapid Commun. Mass Spectrom. 2001, 15, 217–223.CrossRefGoogle Scholar
  20. 20.
    Guo, Z.; Ganawi, A. A. A.; Liu, Q.; He, L. Nanomaterials in Mass Spectrometry Ionization and Prospects for Biological Application. Anal. Bioanal. Chem. 2006, 384, 584–592.CrossRefGoogle Scholar
  21. 21.
    Kinumi, T.; Saisu, T.; Takayama, M.; Niwa, H. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Using an Inorganic Particle Matrix for Small Molecule Analysis. J. Mass Spectrom. 2000, 35, 417–422.CrossRefGoogle Scholar
  22. 22.
    Schürenberg, M.; Dreisewerd, K.; Hillenkamp, F. Laser Desorption/Ionization Mass Spectrometry of Peptides and Proteins with Particle Suspension Matrixes. Anal. Chem. 1999, 71, 221–229.CrossRefGoogle Scholar
  23. 23.
    McLean, J. A.; Stumpo, K. A.; Russell, D. H. Size-Selected (2–10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides. J. Am. Chem. Soc. 2005, 127, 5304–5305.CrossRefGoogle Scholar
  24. 24.
    Huang, Y.-F.; Chang, H.-T. Nile Red-Adsorbed Gold Nanoparticle Matrixes for Determining Aminothiols through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 1485–1493.CrossRefGoogle Scholar
  25. 25.
    Su, C.-L.; Tseng, W.-L. Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Chem. 2007, 79, 1626–1633.CrossRefGoogle Scholar
  26. 26.
    Wei, J.; Buriak, J. M.; Siuzdak, G. Desorption-Ionization Mass Spectrometry on Porous Silicon. Nature. 1999, 399, 243–246.CrossRefGoogle Scholar
  27. 27.
    Lin, Y.-S.; Chen, Y.-C. Laser Desorption/Ionization Time-of-Flight Mass Spectrometry on Sol-Gel-Derived 2,5-Dihydroxybenzoic Acid Film. Anal. Chem. 2002, 74, 5793–5798.CrossRefGoogle Scholar
  28. 28.
    Teng, C.-H.; Chen, Y.-C. Fiber Introduction Mass Spectrometry: Coupling Solid-Phase Microextraction with Sol-Gel-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1092–1094.CrossRefGoogle Scholar
  29. 29.
    Ho, K.-C.; Lin, Y.-S.; Chen, Y.-C. Laser Desorption/Ionization Mass Spectrometry on Sol-Gel-derived Dihydroxybenzoic Acid Isomeric Films. Rapid Commun. Mass Spectrom. 2003, 17, 2683–2687.CrossRefGoogle Scholar
  30. 30.
    Lin, Y.-S.; Yang, C.-H.; Chen, Y.-C. Glass-Chip-Based Sample Preparation and On-Chip Tryptic Digestion for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis Using a Sol-Gel/2,5-Dihydroxybenzoic Acid Hybrid Matrix. Rapid Commun. Mass Spectrom. 2004, 18, 313–318.CrossRefGoogle Scholar
  31. 31.
    Chen, C.-T.; Chen, Y.-C. Molecularly Imprinted TiO2-Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Selectively Detecting α-Cyclodextrin. Anal. Chem. 2004, 76, 1453–1457.CrossRefGoogle Scholar
  32. 32.
    Chen, C.-T.; Chen, Y.-C. Desorption/Ionization Mass Spectrometry on Nanocrystalline Titania Sol-Gel-Deposited Films. Rapid Commun. Mass Spectrom. 2004, 18, 1956–1964.CrossRefGoogle Scholar
  33. 33.
    Kaneco, S.; Chen, Y.; Westerhoff, P.; Crittenden, J. C. Fabrication of Uniform Size Titanium Oxide Nanotubes: Impact of Current Density and Solution Conditions. Scripta Mater. 2007, 56, 373–376.CrossRefGoogle Scholar
  34. 34.
    Wu, H.-P.; Su, C.-L.; Chang, H.-C.; Tseng, W.-L. Sample-First preparation: A Method for Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Cyclic Oligosaccharides. Anal. Chem. 2007, 79, 6215–6221.CrossRefGoogle Scholar
  35. 35.
    Finkel, N. H.; Prevo, B. G.; Velev, O. D.; He, L. Ordered Silicon Nanocavity Arrays in Surface-Assisted Desorption/Ionization Mass Spectrometry. Anal. Chem. 2005, 77, 1088–1095.CrossRefGoogle Scholar
  36. 36.
    Hoang, T. T.; Chen, Y. F.; May, S. W.; Browner, R. F. Analysis of Organoselenium Compounds in Human Urine Using Active Carbon and Chemically Modified Silica Sol-Gel Surface-Assisted Laser Desorption/Ionization High-Resolution Time-of-Flight Mass Spectrometry. Anal. Chem. 2004, 76, 2062–2070.CrossRefGoogle Scholar
  37. 37.
    Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Y.; Zhabin, S.; Nikiforov, S. On the Role of Defects and Surface Chemistry for Surface-Assisted Laser Desorption Ionization from Silicon. J. Chem. Phys. 2008, 128, 014711–014719.CrossRefGoogle Scholar
  38. 38.
    Han, M.; Sunner, J. An Activated Carbon Substrate Surface for Laser Desorption Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 644–649.CrossRefGoogle Scholar
  39. 39.
    Go, E. P.; Apon, J. V.; Luo, G.; Saghatelian, A.; Daniels, R. H.; Sahi, V.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G. Desorption/Ionization on Silicon Nanowires. Anal. Chem. 2005, 77, 1641–1646.CrossRefGoogle Scholar
  40. 40.
    Lee, W.-J.; Alhoshan, M.; Smyrl, W. H. Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes-Electrochemical Properties. J. Electrochem. Soc. 2006, 153, B499-B505.CrossRefGoogle Scholar
  41. 41.
    Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordström, A.; Siuzdak, G. Clathrate Nanostructures for Mass Spectrometry. Nature. 2007, 449, 1033–1036.CrossRefGoogle Scholar
  42. 42.
    Foster, D. W. Diabetes Mellitus. In Harrison’s Principles of Internal Medicine, 14th ed.; Kasper, D. L.; Braunwald, E.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, J. L., Eds.; McGraw-Hill: New York. 1998; p. 2060.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Chun-Yuan Lo
    • 1
  • Jia-Yi Lin
    • 1
  • Wei-Yu Chen
    • 1
  • Cheng-Tai Chen
    • 1
  • Yu-Chie Chen
    • 1
  1. 1.Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations