Skip to main content

Hybrid mass spectrometers for tandem mass spectrometry

Abstract

Mass spectrometers that use different types of analyzers for the first and second stages of mass analysis in tandem mass spectrometry (MS/MS) experiments are often referred to as “hybrid” mass spectrometers. The general goal in the design of a hybrid instrument is to combine different performance characteristics offered by various types of analyzers into one mass spectrometer. These performance characteristics may include mass resolving power, the ion kinetic energy for collision-induced dissociation, and speed of analysis. This paper provides a review of the development of hybrid instruments over the last 30 years for analytical applications.

References

  1. Kondrat, R. W.; Cooks, R. G. Direct Analysis of Mixtures by Mass Spectrometry. Anal. Chem. 1978, 50, 81A-92A.

    CAS  Article  Google Scholar 

  2. Kruger, T. L.; Litton, J. F.; Kondrat, R. W.; Cooks, R. G. Mixture Analysis by Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Chem. 1976, 48, 2113–2119.

    CAS  Article  Google Scholar 

  3. Solterorigau, E.; Kruger, T. L.; Cooks, R. G. Identification of Barbiturates by Chemical Ionization and Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Chem. 1977, 49, 435–442.

    CAS  Article  Google Scholar 

  4. Kondrat, R. W.; Cooks, R. G. Alkaloids in Whole Plant Material—Direct Analysis by Kinetic-Energy Spectrometry. Science 1978, 199, 978–980.

    CAS  Article  Google Scholar 

  5. Kondrat, R. W.; McClusky, G. A.; Cooks, R. G. Direct Mass Spectrometric Mixture Analysis by Negative Chemical Ionization-Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Chem. 1978, 50, 1222–1223.

    CAS  Article  Google Scholar 

  6. McClusky, G. A.; Kondrat, R. W.; Cooks, R. G. Direct Mixture Analysis by Mass-Analyzed Ion Kinetic-Energy Spectrometry Using Negative Chemical Ionization. J. Am. Chem. Soc. 1978, 100, 6045–6051.

    CAS  Article  Google Scholar 

  7. Kondrat, R. W.; McClusky, G. A.; Cooks, R. G. Multiple Reaction Monitoring in Mass Spectrometry Mass Spectrometry for Direct Analysis of Complex Mixtures. Anal. Chem. 1978, 50, 2017–2021.

    CAS  Article  Google Scholar 

  8. Youssefi, M.; Cooks, R. G.; McLaughlin, J. L. Mapping of Cocaine and Cinnamoylcocaine in Whole Coca Plant Tissues by MIKES. J. Am. Chem. Soc. 1979, 101, 3400–3402.

    CAS  Article  Google Scholar 

  9. Kruger, T. L.; Kondrat, R. W.; Joseph, K. T.; Cooks, R. G. Identification of Individual Steroids in Biological Matrices by Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Biochem. 1979, 96, 104–112.

    CAS  Article  Google Scholar 

  10. Zakett, D.; Schoen, A. E.; Kondrat, R. W.; Cooks, R. G. Selected Fragment Scans of Mass Spectrometers in Direct Mixture Analysis. J. Am. Chem. Soc. 1979, 101, 6781–6783.

    CAS  Article  Google Scholar 

  11. McLafferty, F. W.; Bockhoff, F. M. Separation-Identification System for Complex-Mixtures Using Mass Separation and Mass-Spectral Characterization. Anal. Chem. 1978, 50, 69–76.

    CAS  Article  Google Scholar 

  12. McLafferty, F. W. Tandem Mass Spectrometry (MS-MS)—Promising New Analytical Technique for Specific Component Determination in Complex Mixtures. Acc. Chem. Res. 1980, 13, 33–39.

    CAS  Article  Google Scholar 

  13. Beynon, J. H.; Cooks, R. G.; Amy, J. W.; Baitinge, We; Ridley, T. Y. Design and Performance of a Mass Analyzed Ion Kinetic-Energy (MIKE) Spectrometer. Anal. Chem. 1973, 45, 1023A-1031A.

    Article  Google Scholar 

  14. Gross, M. L.; Chess, E. K.; Lyon, P. A.; Crow, F. W.; Evans, S.; Tudge, H. Triple Analyzer Mass Spectrometry for High-Resolution MS/MS Studies. Int. J. Mass Spectrom. Ion Processes 1982, 42, 243–254.

    CAS  Article  Google Scholar 

  15. McLafferty, F. W.; Todd, P. J.; McGilvery, D. C.; Baldwin, M. A. Collisional Activation and Metastable Ion Characteristics, 73: High-Resolution Tandem Mass Spectrometer (MS-MS) of Increased Sensitivity and Mass Range. J. Am. Chem. Soc. 1980, 102, 3360–3363.

    CAS  Article  Google Scholar 

  16. Futrell, J. H.; Miller, C. D. Tandem Mass Spectrometer for Study of Ion-Molecule Reactions. Rev. Sci. Instrum. 1966, 37, 1521–1526.

    CAS  Article  Google Scholar 

  17. Maquestiau, A.; Vanhaverbeke, Y.; Demeyer, C.; Flammang, R.; Perlaux, J. Modification of a Reversed Geometry Mass Spectrometer and Applications to Collisional Processes. Bull. Soc. Chim. Belg. 1976, 85, 69–78.

    CAS  Article  Google Scholar 

  18. Boyd, R. K.; Beynon, J. H. Scanning of Sector Mass Spectrometers to Observe Fragmentations of Metastable Ions. Org. Mass Spectrom. 1977, 12, 163–165.

    CAS  Article  Google Scholar 

  19. Morgan, R. P.; Beynon, J. H.; Bateman, R. H.; Green, B. N. Mm-Zab-2f Double-Focusing Mass Spectrometer and MIKE Spectrometer. Int. J. Mass Spectrom. Ion Processes. 1978, 28, 171–191.

    CAS  Article  Google Scholar 

  20. Laramee, J. A.; Carmody, J. J.; Cooks, R. G. Angle-Resolved Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1979, 31, 333–343.

    CAS  Article  Google Scholar 

  21. Fedor, D. M.; Cooks, R. G. Angle Resolved Mass Spectrometry with a Reversed Geometry Spectrometer. Anal. Chem. 1980, 52, 679–682.

    CAS  Article  Google Scholar 

  22. Russell, D. H.; Smith, D. H.; Warmack, R. J.; Bertram, L. K. The Design and Performance Evaluation of a New High-Performance Mass-Analyzed Ion Kinetic-Energy (MIKE) Spectrometer. Int. J. Mass Spectrom. Ion Processes 1980, 35, 381–391.

    CAS  Article  Google Scholar 

  23. Yost, R. A.; Enke, C. G. Selected Ion Fragmentation with a Tandem Quadrupole Mass Spectrometer. J. Am. Chem. Soc. 1978, 100, 2274–2275.

    CAS  Article  Google Scholar 

  24. Vestal, M. L.; Futrell, J. H. Photodissociation of CH3Cl+ and CH3Br+ in a Tandem Quadrupole Mass Spectrometer. Chem. Phys. Lett. 1974, 28, 559–561.

    CAS  Article  Google Scholar 

  25. McGilvery, D. C.; Morrison, J. D. Mass Spectrometer for Study of Laser-Induced Photo-Dissociation of Ions. Int. J. Mass Spectrom. Ion Processes. 1978, 28, 81–92.

    CAS  Article  Google Scholar 

  26. Glish, G. L. Mass Spectrometry/Mass Spectrometry: Applications and New Instrumentation. Ph.D. Thesis, Purdue University, 1980; pp. 37–58.

  27. Glish, G. L.; McLuckey, S. A.; Ridley, T. Y.; Cooks, R. G. A New Hybrid Sector/Quadrupole Mass Spectrometer for Mass Spectrometry/Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 157–177.

    CAS  Article  Google Scholar 

  28. Jennings, K. R. Collision-Induced Decompositions of Aromatic Molecular Ions. Int. J. Mass Spectrom. Ion Phys. 1968, 1, 227–235.

    CAS  Article  Google Scholar 

  29. Zakett, D.; Cooks, R. G.; Fies, W. J. A Double Quadrupole for Mass Spectrometry/Mass Spectrometry. Anal. Chim. Acta. 1980, 119, 129–135.

    CAS  Article  Google Scholar 

  30. Zakett, D.; Hemberger, P. H.; Cooks, R. G. Functional Group Screening of Complex Mixtures with a Double Quadrupole Mass Spectrometer. Anal. Chim. Acta. 1980, 119, 149–152.

    CAS  Article  Google Scholar 

  31. Busch, K. L.; Kruger, T. L.; Cooks, R. G. Charge-Exchange Using a Double Quadrupole Mass Spectrometer. Anal. Chim. Acta. 1980, 119, 153–156.

    CAS  Article  Google Scholar 

  32. Glish, G. L.; Cooks, R. G. Direct Analysis of Mixtures by Double Quadrupole Mass Spectrometry. Anal. Chim. Acta. 1980, 119, 145–148.

    CAS  Article  Google Scholar 

  33. Glish, G. L.; Hemberger, P. H.; Cooks, R. G. Ion Structure Determinations and Ion-Molecule Reactions by Double Quadrupole Mass Spectrometry. Anal. Chim. Acta. 1980, 119, 137–144.

    CAS  Article  Google Scholar 

  34. Schoen, A. E.; Amy, J. W.; Ciupek, J. D.; Cooks, R. G.; Dobberstein, P.; Jung, G. A Hybrid BEqQ Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes 1985, 65, 125–140.

    CAS  Article  Google Scholar 

  35. Glish, G. L.; McLuckey, S. A.; McBay, E. H.; Bertram, L. K. Design and Performance of a Hybrid Mass Spectrometer of QEB Geometry. Int. J. Mass Spectrom. Ion Processes 1986, 70, 321–338.

    CAS  Article  Google Scholar 

  36. Glish, G. L.; McLuckey, S. A. High-Resolution Detection of Daughter Ions with a Hybrid Mass Spectrometer. Anal. Chem. 1986, 58, 1887–1889.

    CAS  Article  Google Scholar 

  37. Holland, J. F.; Enke, C. G.; Allison, J.; Stults, J. T.; Pinkston, J. D.; Newcome, B.; Watson, J. T. Mass Spectrometry on the Chromatographic Time Scale—Realistic Expectations. Anal. Chem. 1983, 55, 997A-1112A.

    CAS  Article  Google Scholar 

  38. Stults, J. T.; Enke, C. G.; Holland, J. F. Mass Spectrometry/Mass Spectrometry by Time-Resolved Magnetic Dispersion. Anal. Chem. 1983, 55, 1323–1330.

    CAS  Article  Google Scholar 

  39. Enke, C. G.; Stults, J. T.; Holland, J. F.; Pinkston, J. D.; Allison, J.; Watson, J. T. MS-MS by Time-Resolved Magnetic Dispersion Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1983, 46, 229–232.

    CAS  Article  Google Scholar 

  40. Eckenrode, B. A.; Watson, J. T.; Enke, C. G.; Holland, J. F. Post-Sector Beam Deflection in Time-Resolved Ion Momentum Spectrometry (TRIMS). Int. J. Mass Spectrom. Ion Processes 1988, 83, 177–187.

    CAS  Article  Google Scholar 

  41. Stults, J. T.; Holland, J. F.; Watson, J. T.; Enke, C. G. Time-of-Flight Space and Energy Focusing Examined in Time-Resolved Ion Momentum Spectrometry. Int. J. Mass Spectrom. Ion Processes 1986, 71, 169–181.

    CAS  Article  Google Scholar 

  42. Pinkston, J. D.; Rabb, M.; Watson, J. T.; Allison, J. New Time-of-Flight Mass Spectrometer for Improved Mass Resolution,Versatility, and Mass Spectrometry/Mass Spectrometry Studies. Rev. Sci. Instrum. 1986, 57, 583–592.

    CAS  Article  Google Scholar 

  43. Holland, J. F.; Newcombe, B.; Tecklenburg, R. E.; Davenport, M.; Allison, J.; Watson, J. T.; Enke, C. G. Design, Construction, and Evaluation of an Integrating Transient Recorder for Data Acquisition in Capillary Gas-Chromatography Time-of-Flight Mass Spectrometry. Rev. Sci. Instrum. 1991, 62, 69–76.

    CAS  Article  Google Scholar 

  44. Eckenrode, B. A.; Watson, J. T.; Enke, C. G.; Holland, J. F. Complete Mass Spectrometry/Mass Spectrometry Data Field Acquisition on the Chromatographic Time Scale by Time-Resolved Ion Momentum Spectrometry with Time-Array Detection. Anal. Chem. 1990, 62, 1362–1367.

    CAS  Article  Google Scholar 

  45. Enke, C. G.; Newcome, B. H.; Holland, J. F. High Repetition Rate Transient Recorder with Automatic Integration. U.S. patent 4490806, 1984.

  46. Yefchak, G. E.; Schultz, G. A.; Allison, J.; Enke, C. G.; Holland, J. F. Beam Deflection for Temporal Encoding in Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1990, 1, 440–447.

    CAS  Article  Google Scholar 

  47. Medzihradszky, K. F.; Adams, G. W.; Burlingame, A. L. Peptide Sequence Determination by Matrix-Assisted Laser Desorption Ionization Employing a Tandem Double Focusing Magnetic-Orthogonal Acceleration Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1996, 7, 1–10.

    CAS  Article  Google Scholar 

  48. Bateman, R. H.; Green, M. R.; Scott, G.; Clayton, E. A Combined Magnetic Sector-Time-of-Flight Mass Spectrometer for Structural Determination Studies by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1227–1233.

    CAS  Article  Google Scholar 

  49. Anderson, U. N.; Colburn, A. W.; Makarov, A. A.; Raptakis, E. N.; Reynolds, D. J.; Derrick, P. J.; Davis, S. C.; Hoffman, A. D.; Thomson, S. In-Series Combination of a Magnetic-Sector Mass Spectrometer with a Time-of-Flight Quadratic-Field Ion Mirror. Rev. Sci. Instrum. 1998, 69, 1650–1660.

    Article  Google Scholar 

  50. Nikolaev, E. N.; Somogyi, A.; Smith, D. L.; Gu, C. G.; Wysocki, V. H.; Martin, C. D.; Samuelson, G. L. Implementation of Low-Energy Surface-Induced Dissociation (eV SID) and High-Energy Collision-Induced Dissociation (KeV-CID) in a Linear Sector-TOF Hybrid Tandem Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 535–551.

    CAS  Article  Google Scholar 

  51. Cooks, R. G.; Beynon, J. H.; Caprioli, R. M.; Lester, G. R. Metastable Ions; Elsevier Scientific Publishing: Amsterdam, 1973; pp. 63–64.

    Google Scholar 

  52. Glish, G. L.; Goeringer, D. E. Tandem Quadrupole/Time-of-Flight Instrument for Mass Spectrometry/Mass Spectrometry. Anal. Chem. 1984, 56, 2291–2295.

    CAS  Article  Google Scholar 

  53. Glish, G. L.; McLuckey, S. A.; McKown, H. S. Improved Performance of a Tandem Quadrupole Time-of-Flight Mass Spectrometer. Anal. Instrum. 1987, 16, 191–206.

    CAS  Article  Google Scholar 

  54. van den Heuvel, R. H. H.; van Duijn, E.; Mazon, H.; Synowsky, S. A.; Lorenzen, K.; Versluis, C.; Brouns, S. J. J.; Langridge, D.; van der Oost, J.; Hoyes, J.; Heck, A. J. R. Improving the Performance of a Quadrupole Time-of-Flight Instrument for Macromolecular Mass Spectrometry. Anal. Chem. 2006, 78, 7473–7483.

    Article  Google Scholar 

  55. Stafford, G. C. J.; Kelley, P. E.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J. Recent Improvements in and Analytical Applications of Advanced Ion Trap Technology. Int. J. Mass Spectrom. Ion Processes. 1984, 60, 85–98.

    CAS  Article  Google Scholar 

  56. Schwartz, J.; Kaiser, R. E.; Cooks, R. G. A Sector/Ion Trap Hybrid Mass Spectrometer of BE/Trap Configuration. Int. J. Mass Spectrom. Ion Processes. 1990, 98, 209–224.

    CAS  Article  Google Scholar 

  57. Morand, K. L.; Horing, S. R.; Cooks, R. G. A Tandem Quadrupole-Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes. 1991, 105, 13–29.

    CAS  Article  Google Scholar 

  58. Hager, J. W. A New Linear Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2002, 16, 512–526.

    CAS  Article  Google Scholar 

  59. Hager, J. W. Performance Optimization and Fringing Field Modifications of a 24-mm Long rf-Only Quadrupole Mass Spectrometer. Rapid Commun. Mass Spectrom. 1999, 13, 740–748.

    CAS  Article  Google Scholar 

  60. Marshall, A. G.; Comisarow, M. Fourier Transform Ion Cyclotron Resonance (FT-ICR) Spectroscopy. Chem. Phys. Lett. 1974, 25, 282–283.

    Article  Google Scholar 

  61. McIver, R. T.; Hunter, R. L.; Bowers, W. D. Coupling a Quadrupole Mass Spectrometer and a Fourier-Transform Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes 1985, 64, 67–77.

    CAS  Article  Google Scholar 

  62. Hunt, D. F.; Shabanowitz, J.; Yates, J. R.; McIver, R. T.; Hunter, R. L.; Syka, J. E. P.; Amy, J. Tandem Quadrupole Fourier-Transform Mass Spectrometry of Oligopeptides. Anal. Chem. 1985, 57, 2728–2733.

    CAS  Article  Google Scholar 

  63. Hunt, D. F.; Shabanowitz, J.; Yates, J. R.; Zhu, N. Z.; Russell, D. H.; Castro, M. E. Tandem Quadrupole Fourier-Transform Mass Spectrometry of Oligopeptides and Small Proteins. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 620–623.

    CAS  Article  Google Scholar 

  64. Belov, M. E.; Nikolaev, E. N.; Anderson, G. A.; Auberry, K. J.; Harkewicz, R.; Smith, R. D. Electrospray Ionization-Fourier Transform Ion Cyclotron Mass Spectrometry Using Ion Preselection and External Accumulation for Ultrahigh Sensitivity. J. Am. Soc. Mass Spectrom. 2001, 12, 38–48.

    CAS  Article  Google Scholar 

  65. Patrie, S. M.; Charlebois, J. P.; Whipple, D.; Kelleher, N. L.; Hendrickson, C. L.; Quinn, J. P.; Marshall, A. G.; Mukhopadhyay, B. Construction of a Hybrid Quadrupole/Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Versatile MS/MS above 10 KDa. J. Am. Soc. Mass Spectrom. 2004, 15, 1099–1108.

    CAS  Article  Google Scholar 

  66. O’Connor, P. B.; Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Cournoyer, J. C.; Jebanathirajah, J.; Lin, C.; Moyer, S.; Zhao, C. A New Hybrid Electrospray Fourier Transform Mass Spectrometer: Design and Performance Characteristics. Rapid Commun. Mass Spectrom. 2006, 20, 259–266.

    Article  Google Scholar 

  67. Borchers, C. H.; Thapar, R.; Petrotchenko, E. V.; Torres, M. P.; Speir, J. P.; Easterling, M.; Dominski, Z.; Marzluff, W. F. Combined Top-Down and Bottom-up Identifies a Phosphorylation Proteins That Contributes to Proteomics Site in Stem-Loop-Binding High-Affinity RRNA Binding. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3094–3099.

    CAS  Article  Google Scholar 

  68. Robinson, N. E.; Lampi, K. J.; McIver, R. T.; Williams, R. H.; Muster, W. C.; Kruppa, G.; Robinson, A. B. Quantitative Measurement of Deamidation in Lens β B2-Crystallin and Peptides by Direct Electrospray Injection and Fragmentation in a Fourier Transform Mass Spectrometer. Mol. Vis. 2005, 11, 1211–1219.

    CAS  Google Scholar 

  69. Michael, S. M.; Chien, M.; Lubman, D. M. An Ion Trap Storage Time-of-Flight Mass Spectrometer. Rev. Sci. Instrum. 1992, 63, 4277–4284.

    CAS  Article  Google Scholar 

  70. Fountain, S. T.; Lee, H. W.; Lubman, D. M. Mass-Selective Analysis of Ions in Time-of-Flight Mass Spectrometry Using an Ion-Trap Storage Device. Rapid Commun. Mass Spectrom. 1994, 8, 487–494.

    CAS  Article  Google Scholar 

  71. Doroshenko, V. M.; Cotter, R. J. A Quadrupole Ion Trap Time-of-Flight Mass Spectrometer with a Parabolic Reflectron. J. Mass Spectrom. 1998, 33, 305–318.

    CAS  Article  Google Scholar 

  72. Douglas, D. J.; Campbell, J. M.; Collings, B. A. A New Linear Ion Trap Time-of-Flight System with Tandem Mass Spectrometry Capabilities. Rapid Commun. Mass Spectrom. 1998, 12, 1463–1474.

    Article  Google Scholar 

  73. Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.

    CAS  Article  Google Scholar 

  74. Gabryelski, W.; Li, L. Photo-Induced Dissociation of Electrospray Generated Ions in an Ion Trap/Time-of-Flight Mass Spectrometer. Rev. Sci. Instrum. 1999, 70, 4192–4199.

    CAS  Article  Google Scholar 

  75. Gabryelski, W.; Li, L. Photoinduced Dissociation of Electrospray-Generated Ions in an Ion Trap/Time-of-Flight Mass Spectrometer Using a Pulsed CO2 Laser. Rapid Commun. Mass Spectrom. 2002, 16, 1805–1811.

    CAS  Article  Google Scholar 

  76. Martin, R. L.; Brancia, F. L. Analysis of High Mass Peptides Using a Novel Matrix-Assisted Laser Desorption/Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2003, 17, 1358–1365.

    CAS  Article  Google Scholar 

  77. Bereszczak, J. Z.; Brancia, F. L.; Quijano, F. A. R.; Goux, W. J. Relative Quantification of Tau-Related Peptides Using Guanidino-Labeling Derivatization (GLAD) with On-Line LC on a Hybrid Ion Trap (IT) Time-of-Flight (TOF) Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2007, 18, 201–207.

    CAS  Article  Google Scholar 

  78. Hashimoto, Y.; Waki, I.; Yoshinari, K.; Shishika, T.; Terui, Y. Orthogonal Trap Time-of-Flight Mass Spectrometer Using a Collisional Damping Chamber. Rapid Commun. Mass Spectrom. 2005, 19, 221–226.

    CAS  Article  Google Scholar 

  79. Hashimoto, Y.; Hasegawa, H.; Waki, I. Dual Linear Ion Trap/Orthogonal Acceleration Time-of-Flight Mass Spectrometer with Improved Precursor Ion Selectivity. Rapid Commun. Mass Spectrom. 2005, 19, 1485–1491.

    CAS  Article  Google Scholar 

  80. Makarov, A. Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal. Chem. 2000, 72, 1156–1162.

    CAS  Article  Google Scholar 

  81. Syka, J. E. P.; Marto, J. A.; Bai, D. L.; Horning, S.; Senko, M. W.; Schwartz, J. C.; Ueberheide, B.; Garcia, B.; Busby, S.; Muratore, T.; Shabanowitz, J.; Hunt, D. F. Novel Linear Quadrupole Ion Trap/FT Mass Spectrometer: Performance Characterization and Use in the Comparative Analysis of Histone H3 Post-Translational Modifications. J. Proteome Res. 2004, 3, 621–626.

    CAS  Article  Google Scholar 

  82. Makarov, A.; Denisov, E.; Kholomeev, A.; Baischun, W.; Lange, O.; Strupat, K.; Horning, S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78, 2113–2120.

    CAS  Article  Google Scholar 

  83. Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 977–982.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Glish.

Additional information

Published online January 9, 2008

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glish, G.L., Burinsky, D.J. Hybrid mass spectrometers for tandem mass spectrometry. J. Am. Soc. Spectrom. 19, 161–172 (2008). https://doi.org/10.1016/j.jasms.2007.11.013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2007.11.013

Keywords

  • Electron Capture Dissociation
  • Quadrupole Mass Filter
  • Hybrid Instrument
  • Kinetic Ener
  • McLa Fferty