Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 17, Issue 9, pp 1239–1248 | Cite as

A deconvolution method for the separation of specific versus nonspecific interactions in noncovalent protein-ligand complexes analyzed by ESI-FT-ICR mass spectrometry

  • Thorsten Daubenfeld
  • Anne-Pascale Bouin
  • Guillaume van der Rest
Articles

Abstract

A method to separate specific and nonspecific noncovalent interactions observed in ESI mass spectra between a protein and its ligands is presented. Assuming noncooperative binding, the specific ligand binding is modeled as a statistical distribution on identical binding sites. For the nonspecific fraction we assume a statistical distribution on a large number of “nonspecific” interacting sites. The model was successfully applied to the noncovalent interaction between the protein creatine kinase (CK) and its ligands adenosine diphosphate (ADP) and adenosine triphosphate (ATP) that both exhibit nonspecific binding in the mass spectrum. The two sequential dissociation constants obtained by applying our method are K1,diss=11.8±1.5µM and K2,diss = 48±6µM for ADP. For ATP, the constants are K1,diss = 27±7µM and K2,diss = 114±27µM. All constants are in good correlation with reported literature values. The model should be valuable for systems with a large dissociation constant that require high ligand concentrations and thus have increased potential of forming nonspecific adducts.

References

  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science. 1989, 246, 464–471.CrossRefGoogle Scholar
  2. 2.
    Loo, J. A. Electrospray Ionization Mass Spectrometry: A Technology for Studying Noncovalent Macromolecular Complexes. Int. J. Mass. Spectrom. 2000, 200, 175–186.CrossRefGoogle Scholar
  3. 3.
    Veenstra, T. D. Electrospray Ionization Mass Spectrometry in the Study of Biomolecular Noncovalent Interactions. Biophys. Chem. 1999, 79, 63–79.CrossRefGoogle Scholar
  4. 4.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  5. 5.
    Smith, R. D. Evolution of ESI-Mass Spectrometry and Fourier Transform Ion Cyclotron Resonance for Proteomics and Other Biological Applications. Int. J. Mass Spectrom. 2000, 200, 509–544.CrossRefGoogle Scholar
  6. 6.
    Heck, A. J. R.; Jørgensen, T. J. D. Vancomycin in Vacuo. Int. J. Mass Spectrom. 2004, 236, 11–23.CrossRefGoogle Scholar
  7. 7.
    Robinson, C. V.; Chung, E. W.; Kragelund, B. B.; Knudsen, J.; Aplin, R. T.; Poulsen, F. M.; Dobson, C. M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.CrossRefGoogle Scholar
  8. 8.
    Peschke, M.; Verkerk, U. H.; Kebarle, P. Features of the ESI Mechanism that Affect the Observation of Multiply Charged Noncovalent Protein Complexes and the Determination of the Association Constant by the Titration Method. J. Am. Soc. Mass Spectrom. 2004, 15, 1424–1434.CrossRefGoogle Scholar
  9. 9.
    Wang, W.; Kitova, E. N.; Klassen, J. S. Determination of Protein-Oligosaccharide Binding by Nanoelectrospray Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Methods Enzymol. 2003, 362, 376–396.CrossRefGoogle Scholar
  10. 10.
    Wang, W.; Kitova, E. N.; Klassen, J. S. Nonspecific Protein-Carbohydrate Complexes Produced by Nanoelectrospray Ionization. Factors Influencing Their Formation and Stability. Anal. Chem. 2005, 77, 3060–3071.CrossRefGoogle Scholar
  11. 11.
    Wang, W.; Kitova, E. N.; Sun, J.; Klassen, J. S. Blackbody Infrared Radiative Dissociation of Nonspecific Protein-Carbohydrate Complexes Produced by Nanoelectrospray Ionization: The Nature of the Noncovalent Interactions. J. Am. Soc. Mass Spectrom. 2005, 16, 1583–1594.CrossRefGoogle Scholar
  12. 12.
    Pinske, M. W. H.; Heck, A. J. R.; Rumpel, K.; Pullen, F. Probing Noncovalent Protein-Ligand Interactions of the cGMP-Dependent Protein Kinase Using Electrospray Ionization Time of Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1392–1399.CrossRefGoogle Scholar
  13. 13.
    Sundquist, G.; Benkestock, K.; Roeraade, J. Investigation of Multiple Binding Sites on Ribonuclease A Using Nano-Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1011–1016.CrossRefGoogle Scholar
  14. 14.
    Benkestock, K.; Edlund, P.-O.; Roeraade, J. Electrospray Ionization Mass Spectrometry as a Tool for Determination of Drug Binding Sites to Human Serum Albumin by Noncovalent Interaction. Rapid Commun. Mass Spectrom. 2005, 19, 1637–1643.CrossRefGoogle Scholar
  15. 15.
    Watts, D. C. Creatine Kinase (Adenosine 5′-Triphosphate-Creatine Phosphotransferase). In The Enzymes, Vol. VIII; Boyer, P. D., Ed.; Academic Press: New York/London, 1973; pp 383–455.Google Scholar
  16. 16.
    Borders, C. L.; Snider, M. J.; Wolfenden, R.; Edminston, P. L. Determination of the Affinity of Each Component of a Composite Quaternary Transition-State Analogue Complex of Creatine Kinase. Biochemistry. 2002, 41, 6995–7000.CrossRefGoogle Scholar
  17. 17.
    McLaughlin, A. C. The Interaction of 8-Anilino-1-Nnaphtalenesulfonate with Creatine Kinase. J. Biol. Chem. 1974, 249(5), 1445–1452.Google Scholar
  18. 18.
    Burbaum, J. J.; Knowles, J. R. Internal Thermodynamics of Enzymes Determined by Equilibrium Quench: Values of Kint for Enolase and Creatine Kinase. Biochemistry. 1989, 28, 9306–9317.CrossRefGoogle Scholar
  19. 19.
    Hornemann, T.; Rutishauser, D.; Wallimann, T. Why is Creatine Kinase a Dimer? Evidence for Cooperativity Between the Two Subunits. Biochim. Biophys. Acta. 2000, 1480(1/2), 365–373.CrossRefGoogle Scholar
  20. 20.
    Kuby, S. A.; Mahowald, T. A.; Noltmann, E. A. Studies on Adenosine Triphosphate Transphosphorylases. IV. Enzyme-Substrate Interactions. Biochemistry. 1962, 1, 748–762.CrossRefGoogle Scholar
  21. 21.
    Loo, J. A.; Ogorzalek Loo, R. G. Electrospray Ionization Mass Spectrometry of Peptides and Proteins. In Electrospray Ionization Mass Spectrometry. Cole, R. B., ed. John Wiley and Sons, Inc: New York, 1997, pp 385–419.Google Scholar
  22. 22.
    Chowdhury, S. K.; Katta, V.; Chait, B. T. Probing Conformational Changes in Proteins by Mass Spectrometry. J. Am. Chem. Soc. 1990, 112, 9012–9013.CrossRefGoogle Scholar
  23. 23.
    Loo, J. A.; Hu, P.; McConnell, P.; Mueller, W. T.; Sawyer, T. K.; Thanabal, V. A Study of Src SH2 Domain Protein-Phosphopeptide Binding Interactions by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 234–243.CrossRefGoogle Scholar
  24. 24.
    Greig, M. J.; Gaus, H.; Cummins, L. L.; Sasmor, H.; Griffey, R. H. Measurement of Macromolecular Binding Using Electrospray Mass Spectrometry. Determination of Dissociation Constants for Oligonucleotide-Serum Albumin Complexes. J. Am. Chem. Soc. 1995, 117, 10765–10766.CrossRefGoogle Scholar
  25. 25.
    Gabelica, V.; de Pauw, E.; Rosu, F. Interaction between Antitumor Drugs and a Double-Stranded Oligonucleotide Studied by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1999, 34, 1328–1337.CrossRefGoogle Scholar
  26. 26.
    Jurchen, J. J.; Garcia, D. E.; Williams, E. R. Further Studies on the Origins of Asymmetric Charge Partitioning in Protein Homodimers. J. Am. Soc. Mass Spectrom. 2004, 15, 1408–1415.CrossRefGoogle Scholar
  27. 27.
    Forstner, M.; Kriechbaum, M.; Laggner, P.; Wallimann, T. Structural Changes of Creatine Kinase Upon Substrate Binding. Biophys. J. 1998, 75, 1016–1023.CrossRefGoogle Scholar
  28. 28.
    Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular Beams of Macro-Ions. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  29. 29.
    Kebarle, P.; Ho, Y. On the Mechanism of Electrospray Mass Spectrometry. In Electrospray Ionization Mass Spectrometry. Cole, R. B., ed. John Wiley and Sons, Inc.: New York, 1997, pp. 3–63.Google Scholar
  30. 30.
    Tanford, C. Multiple Equilibria. In Physical Chemistry of Macromolecules. Tanford, C., ed. John Wiley and Sons, Inc.: New York/London, 1961, pp. 526–586.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Thorsten Daubenfeld
    • 1
  • Anne-Pascale Bouin
    • 1
  • Guillaume van der Rest
    • 1
  1. 1.Laboratoire des Mécanismes RéactionnelsCNRS UMR 7651, Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations