Novel linear ion trap mass analyzer composed of four planar electrodes

Articles

Abstract

A novel linear ion trap mass analyzer was developed using just four elongated planar electrodes, mounted in parallel, and employing an RF potential for ion trapping in the radial and axial directions. Mass analysis was achieved using the mass-selective instability scan with ion ejection in the radial direction. The performance of this new device was characterized in comparison with the 6-electrode rectilinear ion trap (RIT) from which it is derived. The 4-electrode trap gives optimum performance in an asymmetric geometry, just like the original optimized 6-electrode RIT. The strong RF fringing fields at the ends of the RF rods account for axial ion trapping without use of extra electrodes or an axial DC voltage. Field calculations and simulations have been carried out to study the trapping potential inside RITs with various configurations. Demonstrated capabilities include analysis of externally injected ions with mass resolution in excess of 1000 and a mass/charge range of 650 Th as well as tandem mass spectrometry capabilities. The geometric simplicity and performance characteristics of the 4-electrode RIT make it particularly attractive in the development of next generation miniaturized mass spectrometers.

Keywords

Radio Frequency Field PFTBA Radio Frequency Electrode Radio Frequency Potential Tandem Mass Spectrometry Capability 

References

  1. 1.
    March, R. E.; Todd, J. F. J. Quadrupole Ion Trap Mass Spectrometry, 2nd ed. John Wiley and Sons, Inc: Hoboken, NJ, 2005, pp 1–33.CrossRefGoogle Scholar
  2. 2.
    Paul, W.; Steinwedel, H. A New Mass Spectrometer without a Magnetic Field. Z. Naturforsch., 1953, 8a, 448.Google Scholar
  3. 3.
    Stafford, G. C.; Kelley, P. E.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J. Recent Improvements in and Analytical Applications of Advanced Ion Trap Technology. Int. J. Mass Spectrom. Ion Processes 1984, 60, 85–98.CrossRefGoogle Scholar
  4. 4.
    Syka, J. E. P. Practical Aspects of Ion Trap Mass Spectrometry, Vol. I; March, R. E.; Todd, J.F.J., Eds.; CRC Press: Boca Raton, FL, 1995, p 169.Google Scholar
  5. 5.
    Franzen, J. The Nonlinear Ion Trap. Part 4. Mass Selective Instability Scan with Multipole Superposition. Int. J. Mass Spectrom. Ion Processes 1993, 125, 165–170.CrossRefGoogle Scholar
  6. 6.
    Wells, J. M.; Badman, E. R.; Cooks, R. G. A Quadrupole Ion Trap with Cylindrical Geometry Operated in the Mass-Selective Instability Mode. Anal. Chem. 1998, 70, 438–444.CrossRefGoogle Scholar
  7. 7.
    Wu, G.; Cooks, R. G.; Ouyang, Z. Geometry Optimization for the Cylindrical Ion Trap: Field Calculations, Simulations, and Experiments. Int. J. Mass Spectrom. 2005, 241, 119–132.CrossRefGoogle Scholar
  8. 8.
    Kornienko, O.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M. Micro Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 50–53.CrossRefGoogle Scholar
  9. 9.
    Blain, M. G.; Riter, L. S.; Cruz, D.; Austin, D. E.; Wu, G.; Plass, W. R.; Cooks, R. G. Towards the Hand-Held Mass Spectrometer: Design Considerations, Simulation, and Fabrication of Micrometer-Scaled Cylindrical Ion Traps. Int. J. Mass Spectrom. 2004, 236, 91–104.CrossRefGoogle Scholar
  10. 10.
    March, R. E.; Todd, J. F. J. Practical Aspects of Ion Trap Mass Spectrometry Vol. I: Fundamentals of Ion Trap Mass Spectrometry; CRC Press, Boca Raton, FL, 1995 pp 25–167.Google Scholar
  11. 11.
    Kocher, F.; Favre, A.; Gonnet, F.; Tabet, J.-C. Study of Ghost Peaks Resulting from Space Charge and Nonlinear Fields in an Ion Trap Mass Spectrometer. J. Mass Spectrom. 1998, 33, 921–935.CrossRefGoogle Scholar
  12. 12.
    Schwartz, J. C. Proceedings of the 9th Sanibel Conference on Mass Spectrometry; Sanibel Island, FL, January 1997.Google Scholar
  13. 13.
    Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.CrossRefGoogle Scholar
  14. 14.
    Hager, J. M. A New Linear Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2002, 16, 512–526.CrossRefGoogle Scholar
  15. 15.
    Ouyang, Z.; Wu, G.; Song, Y.; Li, H.; Plass, W. R.; Cooks, R. G. Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer. Anal. Chem. 2004, 76, 4595–4605.CrossRefGoogle Scholar
  16. 16.
    Song, Q.; Kothari, S.; Senko, M. A.; Schwartz, J. C.; Amy, R. J. W.; Stafford, G. C.; Cooks, R. G.; Ouyang, Z. Rectilinear Ion Trap Mass Spectrometers with Atmospheric Pressure Interface and Electrospray Ionization Source. Anal. Chem. 2005, in press.Google Scholar
  17. 17.
    Zhang, C.; Chen, H.; Guymon, A. J.; Wu, G.; Cooks, R. G.; Ouyang, Z. Instrumentation and Methods for Ion and Reaction Monitoring Using A Nonscanning Rectilinear Ion Trap. Int. J. Mass Spectrom. 2005, in press.Google Scholar
  18. 18.
    Tabert, A. M.; Goodwin, M. P.; Cooks, R. G. Co-occurrence of Boundary and Resonance Ejection in a Multiplexed Rectilinear Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom 2006, 17, 56–59.CrossRefGoogle Scholar
  19. 19.
    Douglas, D. J.; Frank, A. J.; Mao, D. Linear Ion Traps in Mass Spectrometry. Mass Spectrom. Rev. 2005, 24, 1–29.CrossRefGoogle Scholar
  20. 20.
    Xia, Y.; Liang, X.; McLuckey, S. A. Sonic Spray as a Dual Polarity Ion Source for Ion/Ion Reactions. Anal. Chem. 2005, 77, 3683–3689.CrossRefGoogle Scholar
  21. 21.
    Xia, Y.; Wu, J.; McLuckey, S. A.; Londry, F. A.; Hager, J. W. Mutual Storage Mode Ion/Ion Reactions in a Hybrid Linear Ion Trap. J. Am. Soc. Mass Spectrom. 2005, 16, 71–81.CrossRefGoogle Scholar
  22. 22.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cation. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  23. 23.
    Pitteri, S. J.; Chrisman, S. A.; McLuckey, S. A. Electron Transfer Ion/Ion Reactions of Doubly Protonated Peptides: The Effect of Elevated Bath Gas Temperature. Anal. Chem. 2005, 77, 5662–5669.CrossRefGoogle Scholar
  24. 24.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  25. 25.
    Louris, J. N.; Cooks, R. G.; Syka, J. E. P.; Kelley, P. E.; Stafford, G. C.; Todd, J. F. J. Instrumentation, Applications, and Energy Deposition in Quadrupole Ion-Trap Tandem Mass Spectrometry. Anal. Chem. 1987, 59, 1677–1685.CrossRefGoogle Scholar
  26. 26.
    Guan, S. H.; Marshall, A. G. Stored Wave-Form Inverse Fourier-Transform Axial Excitation/Ejection for Quadrupole Ion Trap Mass Spectrometry. Anal. Chem. 1993, 65, 1288–1294.CrossRefGoogle Scholar
  27. 27.
    Bui, H. A.; Cooks, R. G. Windows Version of the Ion Trap Simulation Program ITSIM: A Powerful Heuristic and Predictive Tool In Ion Trap Mass Spectrometry. J. Mass Spectrom. 1998, 33, 297–304.CrossRefGoogle Scholar
  28. 28.
    Dehmelt, H. G. Radiofrequency Spectroscopy of Stored Ions I: Storage. Adv. Atom. Mol. Phys. 1967, 3, 53–72.CrossRefGoogle Scholar
  29. 29.
    Todd, J. F. J.; Waldren, R. M.; Mather, R. E.; Lawson, G. On the Relative Efficiencies of Confinement of Ar+ and Ar2+ Ions in a Quadrupole Ion Storage Trap (QUISTOR). Int. J. Mass Spectrom. Ion Phys. 1978, 28, 141–151.CrossRefGoogle Scholar
  30. 30.
    Quarmby, S. T.; Yost, R. A. Fundamental Studies of Ion Injection and Trapping of Electrosprayed Ions on a Quadrupole Ion Trap. Int. J. Mass Spectrom. 1999, 190/191, 81–102.CrossRefGoogle Scholar
  31. 31.
    Dolnikowski, G. G.; Kristo, M. J.; Enke, C. G.; Watson, J. T. Ion-Trapping Technique for Ion/Molecule Reaction Studies in the Center Quadrupole of a Triple Quadrupole Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes 1988, 82, 1–15.CrossRefGoogle Scholar
  32. 32.
    Misharin, A. S.; Laughlin, B. C.; Vilkov, A.; Takats, Z.; Ouyang, Z.; Cooks, R. G. High-Throughput Mass Spectrometer Using Atmospheric Pressure Ionization and a Cylindrical Ion Trap Array. Anal. Chem. 2005, 77, 459–470.CrossRefGoogle Scholar
  33. 33.
    Tabert, A. M.; Griep-Raming, J.; Guymon, A. J.; Cooks, R. G. High-Throughput Miniature Cylindrical Ion Trap Array Mass Spectrometer. Anal. Chem. 2003, 75, 5656–5664.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.II Physikalisches InstitutJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations