Skip to main content

Ion funnels for the masses: Experiments and simulations with a simplified ion funnel


A modified ion funnel is described. Counterintuitively, increased spacing between electrodes results in enhanced “focusing” of the ions through the funnel. Consequently, the internal diameter (i.d.) of the funnel need not decrease to the conductance limit (as in previous designs). A simple dc-only lens, which also serves as the conductance limit, combined with the natural flow of gas is used to extract the ions from the funnel. Ions with mass to charge ratios varying between 75 and 3000 m/z are passed through the funnel with no apparent discrimination. The funnel can be operated under mild conditions that preserve weakly bound noncovalent complexes. After testing several designs, a thin closely spaced dc lens was found to be the best solution for extracting ions. A simple method for simulating ion trajectories at nonzero pressures based on ion mobility and explicit diffusion is described. This theoretical approach was used to design and calculate ion trajectories for the modified funnel presented here. Finally, the increased spacing between electrodes in the current funnel significantly relaxes machining constraints, reduces cost, and enhances ease of use versus previous funnel designs.


  1. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.

    Article  CAS  Google Scholar 

  2. Shaffer, S. A.; Tang, K.; Anderson, G. A.; Prior, D. C.; Udseth, H. R.; Smith, R. D. A Novel Ion Funnel for Focusing Ions at Elevated Pressure Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1813–1817.

    Article  CAS  Google Scholar 

  3. Shaffer, S. A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. An Ion Funnel Interface for Improved Ion Focusing and Sensitivity Using Electrospray Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 4111–4119.

    Article  CAS  Google Scholar 

  4. Shaffer, S. A.; Tolmachev, A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. Characterization of an Improved Electrodynamic Ion Funnel Interface for Electrospray Ionization Mass Spectrometry. Anal. Chem. 1999, 71, 2957–2964.

    Article  CAS  Google Scholar 

  5. Lynn, E. C.; Chung, M.-C.; Han, C.-C. Characterizing the Transmission Properties of an Ion Funnel. Rapid Commun. Mass Spectrom. 2000, 14, 2129–2134.

    Article  CAS  Google Scholar 

  6. Tolmachev, A.; Taeman, K.; Udseth, H. R.; Smith, R. D.; Bailey, T. H.; Futrell, J. H. Simulation-Based Optimization of the Electrodynamic Ion Funnel for High Sensitivity Electrospray Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2000, 203, 31–47.

    Article  CAS  Google Scholar 

  7. Taeman, K.; Tolmachev, A.; Harkewicz, R.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D.; Bailey, T. H.; Rakov, S.; Futrell, J. H. Design and Implementation of a New Electrodynamic Ion Funnel. Anal. Chem. 2000, 72, 2247–2255.

    Article  Google Scholar 

  8. Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 13–23.

    Article  CAS  Google Scholar 

  9. Seymour, J. L.; Syrstad, E. A.; Langley, C. C.; Turecek, F. Neutralization-Reionization of Ions Produced by Electrospray Instrument Design and Initial Data. Int. J. Mass Spectrom. 2003, 228, 687–702.

    Article  CAS  Google Scholar 

  10. Taeman, K.; Tang, K.; Udseth, H. R.; Smith, R. D. A Multicapillary Inlet Jet Disruption Electrodynamic Ion Funnel Interface for Improved Sensitivity Using Atmospheric Pressure Ion Sources. Anal. Chem. 2001, 73, 4162–4170.

    Article  Google Scholar 

  11. Tang, K. Q.; Tolmachev, A. V.; Nikolaev, E.; Zhang, R.; Belov, M. E.; Udseth, H. R.; Smith, R. D. Independent Control of Ion Transmission in a Jet Disrupter Dual-Channel Ion Funnel Electrospray Ionization. Anal. Chem. 2002, 74, 5431–5437.

    Article  CAS  Google Scholar 

  12. Dahl, D. A. SIMION 3D (Version 7.0) Idaho National Engineering and Environmental Laboratory; Idaho Falls, ID, 2000.

    Google Scholar 

  13. O’Connor, P. B.; Costello, C. E.; Earle, W. E. A High Voltage RF Oscillator for Driving Multipole Ion Guides. J. Am. Soc. Mass Spectrom. 2002, 13, 1370–1375.

    Article  Google Scholar 

  14. Mason, E. A.; McDaniel, E. W. Tansport Properties of Ions in Gases; Wiley: New York, 1988.

    Book  Google Scholar 

  15. Gerlich, D. Applications of rf Fields and Collision Dynamics in Atomic Mass Spectrometry. J. Anal. At. Spectrom. 2004, 19, 581–590.

    Article  CAS  Google Scholar 

  16. Wytennbach, T.; Bowers, M. T. Gas-Phase Conformations: The Ion Mobility/Ion Chromatography Method. Top. Curr. Chem. 2003, 225, 207–232.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ryan R. Julian.

Additional information

Published online August 10, 2005

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Julian, R.R., Mabbett, S.R. & Jarrold, M.F. Ion funnels for the masses: Experiments and simulations with a simplified ion funnel. J Am Soc Mass Spectrom 16, 1708–1712 (2005).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Ring Electrode
  • Noncovalent Complex
  • Conductance Limit
  • Lens Element
  • Nonzero Pressure