MALDI-TOF MS analysis of urinary nucleosides


As RNA turnover seems to be impaired in cancer patients, modified nucleosides have been evaluated as potential tumor markers. Modified nucleosides are mainly formed post-transcriptionally in tRNA, set free during RNA metabolism, and excreted in urine. Especially methylated nucleosides play an important role, as their levels are higher in urine from cancer patients. For structural elucidation of known and unknown nucleosides from urine samples of cancer patients, MALDI-TOF MS and MALDI-PSD were used for the first time. This technique generally ensures high sensitivity, mass resolution, and accuracy. In our analytical approach we prepurified nucleosides from urine by affinity chromatography and subsequently separated them by semipreparative high performance liquid chromatography. The different fractions were collected separately and analyzed by MALDI-TOF MS and PSD-MALDI using a mixture of six low molecular weight calibrants for internal or external calibration. The molecular totals formulas based on a mass accuracy of 10 ppm and below were calculated and a systematic data base search was performed. The inherent problem of the MALDI-technique, the reduced sensitivity for low molecular weight substances caused by matrix suppression effects, was reduced by our technique. We identified several nucleosides in urine, which were previously identified via retention times and UV spectra of standards after HPLC analysis. Eight further nucleosides were observed. This work demonstrates for the first time the potential of MALDI-TOF and PSD-MALDI in combination with semipreparative HPLC for assignment of nucleosides in urine. The particularly high mass accuracy of this mass spectrometric method provides opportunities for identifying unknown compounds.


  1. 1.

    Schram, K. H. Urinary Nucleosides. Mass Spectrom. Rev. 1998, 17, 131–251.

    CAS  Article  Google Scholar 

  2. 2.

    Speer, J.; Gehrke, C. W.; Kuo, K. C.; Waalkes, T. P.; Borek, E. tRNA Breakdown Products as Markers for Cancer. Cancer 1979, 44, 2120–2123.

    CAS  Article  Google Scholar 

  3. 3.

    Bjoerk, G. R.; Ericson, J. U.; Gustafsson, C. E. D.; Hagervall, T. G.; Joensson, Y. H.; Wikstroem, P. M. Transfer RNA Modification. Annu. Rev. Biochem. 1987, 56, 263–287.

    CAS  Article  Google Scholar 

  4. 4.

    Limbach, P. A.; Crain, P. F.; McCloskey, J. A. Summary: The Modified Nucleosides of RNA. Nucleic Acids Res. 1994, 22, 2183–2196.

    CAS  Article  Google Scholar 

  5. 5.

    Dudley, E.; Lemiere, F.; Van Dongen, W.; Langridge, J. I.; El Sharkawi, S.; Games, D. E.; Esmans, E. L.; Newton, R. P. Analysis of Urinary Nucleosides: III. Identification of 5′-deoxycytidine in Urine of a Patient with Head and Neck Vancer. Rapid Commun. Mass Spectrom. 2003, 17, 1132–1136.

    CAS  Article  Google Scholar 

  6. 6.

    Esteva, F. J.; Hortobagyi, G. N. Prognostic Molecular Markers in Early Breast Cancer. Breast Cancer Res 2004, 6, 109–118.

    CAS  Article  Google Scholar 

  7. 7.

    Braun, S.; Kiechle, M.; Harbeck, N. Breast Carcinoma: Biological Principles, Classification, and Prognostic Factors. Internist 2002, 43, 329–339.

    CAS  Article  Google Scholar 

  8. 8.

    Borek, E.; Baliga, B. S.; Gehrke, C. W.; Kuo, C. W.; Belman, S.; Troll, W.; Waalkes, T. P. High Turnover Rate of Transfer RNA in Tumor Tissue. Cancer Res. 1977, 37, 3362–3366.

    CAS  Google Scholar 

  9. 9.

    Marvel, C. C.; Del Rowe, J.; Bremer, E. G.; Moskal, J. R. Altered RNA Turnover in Carcinogenesis: The Diagnostic Potential of Modified Base Excretion. Mol. Chem. Neuropathol. 1994, 21, 353–368.

    CAS  Article  Google Scholar 

  10. 10.

    Tormey, D. C.; Waalkes, T. P.; Gehrke, C. W. Biological Markers in Breast Carcinoma—Clinical Correlations with Pseudouridine, N2,N2-Dimethylguanosine, and 1-Methylinosine. J. Surg. Oncol. 1980, 14, 267–273.

    CAS  Article  Google Scholar 

  11. 11.

    Itoh, K.; Konno, T.; Sasaki, T.; Ishiwata, S.; Ishida, N.; Misugaki, M. Relationship of Urinary Pseudouridine and 1-Methyladenosine to Activity of Leukemia and Lymphoma. Clin. Chim. Acta 1992, 206, 181–189.

    CAS  Article  Google Scholar 

  12. 12.

    Nakano, K.; Shindo, K.; Yasaka, T.; Yamamoto, H. Reversed-Phase High-Performance Liquid Chromatographic Investigation of Mucosal Nucleosides and Bases and Urinary Modified Nucleosides of Gastrointestinal Cancer Patients. J. Chromatogr. 1985, 343, 21–33.

    CAS  Article  Google Scholar 

  13. 13.

    Waalkes, T. P.; Abeloff, M. D.; Ettinger, D. S.; Woo, K. B.; Gehrke, C. W.; Kuo, K. C.; Borek, E. Modified Ribonucleosides as Biological Markers for Patients with Small Cell Carcinoma of the Lung. Eur. J. Cancer Clin. Oncol. 1982, 18, 1267–1274.

    CAS  Article  Google Scholar 

  14. 14.

    Uziel, M.; Smith, L. H.; Taylor, S. A. Modified Nucleosides in Urine: Selective Removal and Analysis. Clin. Chem. 1976, 22, 1451–1455.

    CAS  Google Scholar 

  15. 15.

    Gehrke, C. W.; Kuo, K. C. Ribonucleoside Analysis by Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. A 1989, 471, 3–36.

    CAS  Article  Google Scholar 

  16. 16.

    Liebich, H. M.; Di Stefano, C.; Wixforth, A.; Schmid, H. R. Quantitation of Urinary Nucleosides by High-Performance Liquid Chromatography. J. Chromatogr. A 1997, 763, 193–197.

    CAS  Article  Google Scholar 

  17. 17.

    Cohen, L. H.; Gusev, A. I. Small Molecule Analysis by MALDI Mass Spectrometry. Anal. Bioanal. Chem. 2002, 373, 571–586.

    CAS  Article  Google Scholar 

  18. 18.

    Lidgard, R.; Duncan, M. W. Utility of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Low Molecular Weight Compounds. Rapid Commun. Mass Spectrom. 1995, 9, 128–132.

    CAS  Article  Google Scholar 

  19. 19.

    Koomen, J. M.; Russell, D. H. Ultraviolet/Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Characterization of 2,5-Dihydroxybenzoic Acid-Induced Reductive Hydrogenation of Oligonucleotides on Cytosine Residues. J. Mass Spectrom. 2000, 35, 1025–1034.

    CAS  Article  Google Scholar 

  20. 20.

    Dudley, E.; El Sharkawi, S.; Games, D. E.; Newton, R. P. Analysis of Urinary Nucleosides: I. Optimization of High Performance Liquid Chromatography/Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 1200–1207.

    CAS  Article  Google Scholar 

  21. 21.

    Crow, F. W.; Tomer, K. B.; Gross, M. L.; McCloskey, J. A.; Bergstrom, D. E. Fast Atom Bombardment Combined with Tandem Mass Spectrometry for the Determination of Nucleosides. Anal. Biochem. 1984, 139, 243–262.

    CAS  Article  Google Scholar 

  22. 22.

    Wilson, M. S.; McCloskey, J. A. Chemical Ionization Mass Spectrometry of Nucleosides: Mechanisms of Ion Formation and Estimations of Proton Affinity. J. Am. Chem. Soc. 1975, 97, 3436–3444.

    CAS  Article  Google Scholar 

  23. 23.

    Xu, G.; Di Stefano, C.; Liebich, H. M.; Zhang, Y.; Lu, P. Reversed-Phase High-Performance Liquid Chromatographic Investigation of Urinary Normal and Modified Nucleosides of Cancer Patients. J. Chromatogr. B Biomed. Sci. Appl. 1999, 732, 307–313.

    CAS  Article  Google Scholar 

  24. 24.

    Dutta, S. P.; Crain, P. F.; McCloskey, J. A.; Chheda, G. B. Isolation and Characterization of 1-b-D-Ribofuranosylpyridin-4-One-3-Carboxamide from Human Urine. Life Sci. 1979, 24, 1381–1388.

    CAS  Article  Google Scholar 

  25. 25.

    Mills, G. C.; Davis, N. J.; Lertratanangkoon, K. Isolation and Identification of 1-Ribosylpyridone Nucleosides from Human Urine. Nucleosides Nucleotides 1989, 8, 415–430.

    CAS  Article  Google Scholar 

  26. 26.

    Chang, M. L.; Johnson, B. C. N-Methyl-4-Pyridone-5-Carboxamide as a Metabolite of Nicotinic Acid in Man and Monkey. J. Biol. Chem. 1961, 236, 2096–2098.

    CAS  Google Scholar 

  27. 27.

    Schlimme, E.; Boos, K. S.; Schwarzenau, E.; Frister, H.; Ott, F. G.; Raezke, K. P.; Wilmers, B. Dual Column HPLC Analysis of Modified Ribonucleosides as Urinary Pathobiochemical Markers in Clinical Research. Nucleosides Nucleotides 1990, 9, 407–410.

    CAS  Article  Google Scholar 

  28. 28.

    Saponara, A. G.; Enger, M. D. Occurrence of N2,N2,7-Trimethylguanosine in Minor RNA Species of a Mammalian Cell Line. Nature 1969, 223, 1365–1366.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bernd Kammerer.

Additional information

Published online April 26, 2005

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kammerer, B., Frickenschmidt, A., Gleiter, C.H. et al. MALDI-TOF MS analysis of urinary nucleosides. J Am Soc Mass Spectrom 16, 940–947 (2005).

Download citation


  • High Performance Liquid Chromatography
  • Nucleoside
  • Pseudouridine
  • Post Source Decay
  • High Performance Liquid Chromatography Separation