Skip to main content
Log in

Comparative stability determination of oligonucleotide duplexes in gas and solution phase

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The relative stability of RNA duplexes were determined in both solution and gas phase. Solution stability as determined by a spectrophotometric method indicated that the Watson-Crick duplexes were more stable than duplexes containing one GA mismatch or two tandem GA mismatches. Gas phase stability was determined using ESI-MS through variation of the collision energy in an ion trap. Stability curves similar to the melting curves obtained in solution were observed. The relative stability in gas phase differed, however, from that in solution. The duplexes with two tandem GA mismatches were found to be more stable than the Watson-Crick and single GA mismatch duplexes. The different trends observed in solution versus gas phase can be attributed to the primary means of interaction. In solution, stacking is expected to be the dominant interaction mode. In the gas phase, hydrogen bonding is expected to be the dominant interaction mode. Duplexes with tandem GA mismatches have the potential to undergo additional hydrogen bonding relative to the other duplexes which could account for their increased stability in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordhoff, E.; Kirpekar, F.; Roepstorff, P. Mass Spectrometry of Nucleic Acids. Mass Spectrom. Rev. 1996, 15, 67–138.

    Article  Google Scholar 

  2. Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.

    Article  CAS  Google Scholar 

  3. Hofstadler, S. A.; Griffey, R. H. Analysis of Noncovalent Complexes of DNA and RNA by Mass Spectrometry. Chem. Rev. 2001, 101, 377–390.

    Article  CAS  Google Scholar 

  4. Light-Wahl, K. J.; Springer, D. L.; Winger, B. E.; Edmonds, C. G.; Camp, D. G.; II, Thrall, B. D.; Smith, R. D. Observation of a Small Oligonucleotide Duplex by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 1993, 115, 803–804.

    Article  CAS  Google Scholar 

  5. Ganem, B. Detection of Oligonucleotide Duplex Forms by Ionspray Mass Spectrometry. Tetrahedron Lett. 1993, 34, 1445–1448.

    Article  CAS  Google Scholar 

  6. Gale, D. C.; Goodlett, D. R.; Light-Wahl, K. J.; Smith, R. D. Observation of Duplex DNA-Drug Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 1994, 116, 6027–6028.

    Article  CAS  Google Scholar 

  7. Doktycz, M. J.; Habibi-Goudarzi, S.; McLuckey, S. A. Accumulation and Storage of Ionized Duplex DNA Molecules in a Quadrupole Ion Trap. Anal. Chem. 1994, 66, 3416–3422.

    Article  CAS  Google Scholar 

  8. Bayer, E.; Bauer, T.; Schmeer, K.; Bleicher, K.; Maier, M.; Gaus, H. Analysis of Double Stranded Oligonucleotides by Electrospray Mass Spectrometry. Anal. Chem. 1994, 66, 3858–3863.

    Article  CAS  Google Scholar 

  9. Ding, J.; Anderegg, R. J. Specific and Nonspecific Dimer Formation in the Electrospray Ionization Mass Spectometry of Oligonucleotides. J. Am. Soc. Mass Spectrom. 1995, 6, 159–164.

    Article  CAS  Google Scholar 

  10. Gale, D. C.; Smith, R. D. Characterization of Noncovalent Complexes Formed Between Minor Groove Binding Molecules and Duplex DNA by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1154–1164.

    Article  CAS  Google Scholar 

  11. Smith, R. D.; Bruce, J. E.; Wu, Q.; Lei, Q. P. New Mass Spectrometric Methods for the Study of Noncovalent Associations of Biopolymers. Chem. Soc. Rev. 1997, 6, 191–202.

    Article  Google Scholar 

  12. Triolo, A.; Arcamone, F. M.; Raffaelli, A.; Salvadori, P. Noncovalent Complexes Between DNA-Binding Drugs and Double Stranded Deoxyoligonucleotides: A Study by Ion Spray Mass Spectrometry. J. Mass Spectrom. 1997, 32, 1186–1194.

    Article  CAS  Google Scholar 

  13. Schnier, P. D.; Klassen, J. S.; Strittmatter, E. F.; Williams, E. R. Activation Energies for Dissociation of Double Strand Oligonucleotide Anions: Evidence for Watson-Crick Base Pairing in Vacuo. J. Am. Chem. Soc. 1998, 120, 9605–9613.

    Article  CAS  Google Scholar 

  14. Gabelica, V.; De Pauw, E.; Rosu, F. Interaction Between Antitumor Drugs and a Double Stranded Oligonucleotide Studies by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1999, 34, 1328–1337.

    Article  CAS  Google Scholar 

  15. Gabelica, V.; Rosu, F.; Houssier, C.; De Pauw, E. Comparison Between Solution Phase Stability and Gas Phase Kinetic Stability of Oligodeoxynucleotide Duplexes. Rapid Commun. Mass Spectrom. 2000, 14, 464–467.

    Article  CAS  Google Scholar 

  16. Wan, K. X.; Gross, M. L.; Shibue, T. Gas Phase Stability of Double Stranded Oligodeoxynucleotides and Their Noncovalent Complexes with DNA-Binding Drugs as Revealed by Collisional Activation in an Ion Trap. J. Am. Soc. Mass Spectrom. 2000, 11, 450–457.

    Article  CAS  Google Scholar 

  17. Drahos, L.; Heeren, R.; Collette, C.; De Pauw, E.; Vekey, K. Thermal Energy Distribution Observed in Electrospray Ionization. J. Mass Spectrom. 1999, 34, 1373–1379.

    Article  CAS  Google Scholar 

  18. Gabelica, V.; De Pauw, E. Comparison Between Solution Phase Stability and Gas Phase Stability of Oligodeoxynucleotide Duplexes. J. Mass Spectrom. 2001, 36, 397–402.

    Article  CAS  Google Scholar 

  19. Gale, D. C.; Morris, A. K.; Sisk, E. C.; Fusciarelli, A. F.; Schwartz, B. L.; Harms, A. C.; Camp, D. G. II; Smith, R. D. Correlation Between ESI-MS, CID, and DNA Duplex Melting Temperature; Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics, Atlanta GA, May 1995, p 597.

  20. Li, Y.; Zon, G.; Wilson, W. D. NMR and Molecular Modeling Evidence for a GA Mismatch Base Pair in a Purine Rich DNA Duplex. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 26–30.

    Article  CAS  Google Scholar 

  21. SantaLucia, J.; Turner, D. H. Sructure of (rGGCGAGCC)2 in Solution from NMR and Restrained Molecular Dynamics. Biochemistry 1993, 32, 12612–12623.

    Article  CAS  Google Scholar 

  22. SantaLucia, J.; Kierzek, R.; Turner, D. H. Effects of GA Mismatches on the Structure and Thermodynamics of RNA Internal Loops. Biochemistry 1990, 29, 8813–8819.

    Article  CAS  Google Scholar 

  23. Aboul-ela, F.; Kohn, D.; Martin, F.; Tinoco, I. Base-Base Mismatches. Thermodynamics of Double Helix Formation for dCA3XA3G + dCT3YT3G (X,Y = A,C,G,T). Nucleic Acids Res. 1985, 13, 4811–4824.

    Article  CAS  Google Scholar 

  24. Gautheret, D.; Konings, D.; Gutell, R. R. A Major Family of Motifs Involving GA Mismatches in Ribosomal RNA. J. Mol. Biol. 1994, 242, 1–8.

    Article  CAS  Google Scholar 

  25. Chou, S.; Zhu, L.; Reid, B. R. Sheared Purine Pairing in Biology. J. Mol. Biol. 1997, 267, 1055–1067.

    Article  CAS  Google Scholar 

  26. Wu, Q.; Gao, J.; Sigal, G. B.; Bruce, J. E.; Whitesides, G. M.; Smith, R. D. Carbonic Anhydrase-Inhibitor Binding: From Solution to the Gas Phase. J. Am. Chem. Soc. 1997, 119, 1157–1158.

    Article  CAS  Google Scholar 

  27. Saenger, W. Principles of Nucleic Acid Structure Springer-Verlag: New York, 1984; 116–158.

    Google Scholar 

  28. Gotoh, O.; Takashira, Y. Stabilities of Nearest Neighbor Doublets in Double Helical DNA Determined by Fitting Calculated Melting Profiles to Observed Profiles. Biopolymers 1981, 20, 1033–1042.

    Article  CAS  Google Scholar 

  29. Wolynes, P. G. Biomolecular Folding In Vacuo!!!(?). Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 2426–2427.

    Article  CAS  Google Scholar 

  30. Wood, T. D.; Chorush, R. A.; Wampler, F. M.; III.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Gas-Phase Folding and Unfolding of Cytochrome C Cations. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 2426–2427.

    Article  Google Scholar 

  31. SantaLucia, J.; Kierzek, R.; Turner, D. H. Context Dependence of Hydrogen Bond Free Energy Revealed by Substitutions in an RNA Hairpin. Science 1992, 256, 217–219.

    Article  CAS  Google Scholar 

  32. Walter, A. E.; Wu, M.; Turner, D. H. The Stability and Structure of Tandem GA Mismatches in RNA Depend on Closing Base Pairs. Biochemistry 1994, 33, 11349–11354.

    Article  CAS  Google Scholar 

  33. Greene, K. L.; Jones, R. L.; Li, Y.; Robinson, H.; Wang, A. H.; Zon, G.; Wilson, W. D. Solution Structure of a GA Mismatch DNA Sequence, d(CCATGAATGG)2, Determined by 2D NMR and Structural Refinement Methods. Biochemistry 1994, 33, 1053–1062.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei (Monica) Yang.

Additional information

Published online July 28, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M.(., Thompson, R. & Hall, G. Comparative stability determination of oligonucleotide duplexes in gas and solution phase. J Am Soc Mass Spectrom 15, 1354–1359 (2004). https://doi.org/10.1016/j.jasms.2004.06.008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2004.06.008

Keywords

Navigation