Skip to main content
Log in

Features of the ESI mechanism that affect the observation of multiply charged noncovalent protein complexes and the determination of the association constant by the titration method

  • Focus: Biological Mass Spectrometry
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Several factors, attributable to the ESIMS mechanism, that can affect the assumptions of the titration method are examined: (1) The assumption that the concentrations in solution of the protein P, the ligand L, and the complex PL are proportional to the respective ion intensities observed with ESIMS, is examined with experiments in which ion intensities of two non-interacting proteins are compared with the respective concentrations. The intensities are found to be approximately proportional to the concentrations. The proportionality factors are found to increase as the mass of the protein is decreased. Very small proteins have much higher intensities. The results suggest that it is preferable to use only the intensity ratio of PL and P, whose masses are very close to each other when L is small, to determine the association constant KA in solution. (2) From the charge residue model (CRM) one expects that the solution will experience a very large increase of concentration due to evaporation of the precursor droplets, before the proteins P and PL are produced in the gas phase. This can shift the equilibrium in the droplets: P + L = PL, towards PL. Analysis of the droplet evaporation history shows that such a shift is not likely, because the time of droplet evolution is very short, only several μs, and the equilibrium relaxation time is much longer. (3) The droplet history shows that unreacted P and L can be often present together in the same droplet. On complete evaporation of such droplets L will land on P leading to PL and this effect will lead to values of KA that are too high. However, it is argued that mostly accidental, weakly bonded, complexes will form and these will dissociate in the clean up stages (heated transfer capillary and CAD region). Thus only very small errors are expected due to this cause. (4) Some PL complexes may have bonding that is too weak in the gas phase even though they have KA values in solution that predict high solution PL yields. In this case the PL complexes may decompose in the clean up stages and not be observed with sufficient intensity in the mass spectrum. This will lead to KA values that are too low. The effect is expected for complexes that involve significant hydrophobic interaction that leads to high stability of the complex in solution but low stability in the gas phase. The titration method is not suited for such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ganem B.; Li Y. T.; Henion J. D. Detection of Noncovalent Receptor-Ligand Complexes in Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 6294–6296.

    Article  CAS  Google Scholar 

  2. Kata V.; Chait B. T. Observation of the Heme-Globin Complex in Native Myoglobin by Electrospray-Ionization Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 8534–8535.

    Article  Google Scholar 

  3. Light-Wahl K. J.; Springer B. E.; Edmonds C. G.; Camp D. G.; Thrall H. B. D.; Smith R. D. Observations of a Small Oligonucleotide Duplex by Electrospray Mass Spectrometry. J. Am. Chem. Soc. 1993, 115, 803–804.

    Article  CAS  Google Scholar 

  4. Loo J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.

    Article  CAS  Google Scholar 

  5. Daniel J. M.; Friess S. D.; Rajagopalan S.; Wend S.; Zenobi R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.

    Article  CAS  Google Scholar 

  6. Daniel J. M.; McCombie G.; Wend S.; Zenobi R. Mass Spectrometric Determination of Association Constants of Adenylate Kinase with Two Noncovalent Inhibitors. J. Am. Soc. Mass Spectrom. 2003, 14, 442–448.

    Article  CAS  Google Scholar 

  7. Locertales I. G.; de la Mora J. F. Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. J. Chem. Phys. 1995, 103, 5041–5060.

    Article  Google Scholar 

  8. de la Mora J. F. Electrospray Ionization of Large Multiply Charged Species Proceeds via Dole’s Charged Residue Mechanism. Anal. Chim. Acta. 2000, 408, 93–104.

    Article  Google Scholar 

  9. Kebarle P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.

    Article  CAS  Google Scholar 

  10. Znamenskiy V.; Marginan I.; Vertes A. Solvated Ion Evaporation from Charged Water Nanodroplets. J. Phys. Chem. A. 2003, 107, 7406–7412.

    Article  CAS  Google Scholar 

  11. Consta S.; Mainer K. R.; Novak W. Fragmentation Mechanisms of Aqueous Clusters Charged with Ions. J. Chem. Phys. 2003, 119, 10125–10132.

    Article  CAS  Google Scholar 

  12. Blades A. T.; Ikonomou M. G.; Kebarle P. Mechanism of Electrospray Mass Spectrometry. Electrospray as an Electrolysis Cell. Anal. Chem. 1991, 64, 2109–2114.

    Article  Google Scholar 

  13. Van Berkel G. E.; Assano K. G.; Schnier P. D. Electrochemical Processes in a Wire-in-a-Capillary Bulk Loaded, Nano-Electrospray Emitter. J. Am. Soc. Mass Spectrom. 2001, 12, 853–862.

    Article  Google Scholar 

  14. Gomez A.; Tang K. Charge and Fission of Droplets in Electrostatic Sprays. Phys. Fluids. 1994, 6, 404–414.

    Article  CAS  Google Scholar 

  15. Smith J. N.; Flagan R. C.; Beauchamp J. L. Droplet Evaporation and Discharge Dynamics in Electrospray Ionization. J. Phys. Chem. A. 2002, 106, 9957–9967.

    Article  CAS  Google Scholar 

  16. Grimm L. R.; Beauchamp J. L. Evaporation and Discharge Dynamics of Highly Charged Droplets of Heptane, Octane, and p-Xylene Generated by Electrospray Ionization. Anal. Chem. 2002, 74, 6291–6297.

    Article  CAS  Google Scholar 

  17. Felitsyn N.; Peschke M.; Kebarle P. Origin and Number of Charges Observed on Multiply Protonated Native Proteins Produced by ESI. Int. J. Mass Spectrom. 2002, 219, 39–62.

    Article  CAS  Google Scholar 

  18. Peschke M.; Blades A. T.; Kebarle P. Charged States of Proteins. Reactions of Doubly Protonated Alkyl Diamines with NH3: Solvation or Deprotonation. Extension of Two Proton Cases to Multiply Protonated Globular Proteins Observed in the Gas Phase. J. Am. Chem. Soc. 2002, 124, 11519–11530.

    Article  CAS  Google Scholar 

  19. Verkerk U.; Peschke M.; Kebarle P. Effect of Buffer Cations and H3O+ on the Charge States of Native Proteins. Significance to the Determination of Stability Constants of Protein Complexes. J. Mass Spectrom. 2003, 38, 618–631.

    Article  CAS  Google Scholar 

  20. Fenn J. B. Collision Kinetics in Gas Dynamics. Applied Atom. Coll. Phys. 1982, 5, 349–378.

    Google Scholar 

  21. Private communication, Fenn, J. B.

  22. Kebarle P.; Tang L. From Ions in Solution to Ions in the Gas Phase—The Mechanism of Electrospray Mass Spectrometry. Anal. Chem. 1993, 65, 972A-988A.

    CAS  Google Scholar 

  23. Olumee Z.; Callahan J. H.; Vertes A. Droplet Dynamics Changes in Electrospray of Methanol-Water Mixtures. J. Phys. Chem. A. 1998, 102, 9154–9160.

    Article  CAS  Google Scholar 

  24. Tinoko, I., Jr.; Sauer K.; Wang J. C. Physical Chemistry—Principles and Applications to Biological Sciences, 3rd ed. Prentice Hall: New Jersey, 1995, Table 7.5.

    Google Scholar 

  25. Nakatani H.; Dunford H. B. Meaning of Diffusion Controlled Association Rate Constants in Enzymology. J. Phys. Chem. 1979, 83, 2662–2665.

    Article  CAS  Google Scholar 

  26. Juraschek R.; Dulks T.; Karas M. Nanoelectrospray—More Than Just a Minimized-Flow Electrospray Ionization Source. J. Am. Soc. Mass Spectrom. 1999, 10, 300–308.

    Article  CAS  Google Scholar 

  27. Robinson C. V.; Chung E. V.; Krageslund B. B.; Knudsen J.; Aplin R. T.; Poulsen F. M.; Dobson C. M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.

    Article  CAS  Google Scholar 

  28. Wu Q.; Gao J.; Joseph-McCarthy D.; Sigal G. B.; Bruce J. E.; Whitesides G. M.; Smith R. D. Carbonic Anhydrase Inhibitor Binding—From Solution to the Gas Phase. J. Am. Chem. Soc. 1997, 119, 1157–1158.

    Article  CAS  Google Scholar 

  29. Breuker K.; McLafferty F. W. Native Electron Capture Dissociation for Structural Characterization of Noncovalent Interactions in Cytochrome c. Angew. Chem. Int. 2003, 42, 4900–4904.

    Article  CAS  Google Scholar 

  30. Wang W.; Kitova E. N.; Klassen J. S. Bioactive Recognition Sites May Not be Energetically Preferred in Protein-Carbohydrate Complexes in the Gas Phase. J. Am. Chem. Soc. 2003, 125, 13630–13631.

    Article  CAS  Google Scholar 

  31. Felitsyn N.; Kitova E. N.; Klassen J. S. Thermal Decomposition of a Gaseous Multiprotein Complex Studied by Blackbody Infrared Radiative Dissociation. Investigating the Origin of Asymmetric Dissociation Behavior. Anal. Chem. 2001, 73, 4647–4661.

    Article  CAS  Google Scholar 

  32. Kitova E. N.; Bundle D. R.; Klassen J. S. Thermal Dissociation of Protein-Oligosaccharide Complexes in the Gas Phase: Mapping the Intrinsic Intermolecular Interactions. J. Am. Chem. Soc. 2002, 124, 5902–5913.

    Article  CAS  Google Scholar 

  33. Benson S. W. Thermochemical Kinetics; 2nd ed.; John Wiley and Sons: New York, 1976; Table 3.4 and associated text.

    Google Scholar 

  34. Schmidt A.; Bahr U.; Karas M. Influence of Pressure in the First Pumping Stage on Analyte Desolvation and Fragmentation in Nano-ESI MS. Anal. Chem. 2001, 73, 6040–6046.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kebarle.

Additional information

Published online August 28, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschke, M., Verkerk, U.H. & Kebarle, P. Features of the ESI mechanism that affect the observation of multiply charged noncovalent protein complexes and the determination of the association constant by the titration method. J Am Soc Mass Spectrom 15, 1424–1434 (2004). https://doi.org/10.1016/j.jasms.2004.05.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2004.05.005

Keywords

Navigation