Reactions of [NH 3 +· , H2O] with carbonyl compounds: A McLafferty rearrangement within a complex?
- 141 Downloads
- 5 Citations
Abstract
The reactions of the water solvated ammonia radical cation [NH 3 ·+ , H2O] with a variety of aldehydes and ketones were investigated. The reactions observed differ from those of low energy aldehydes and ketones radical cations, although electron transfer from the keto compound to ionized ammonia is thermodynamically allowed within the terbody complexes initially formed. The main process yields an ammonia solvated enol with loss of water and an alkene. This process corresponds formally to a McLafferty fragmentation within a complex. With aldehydes, another reaction can take place, namely the transfer of the hydrogen from the CHO group to ammonia, leading to the proton bound dimer of ammonia and water, and to the NH 4 + cation. Comparison between the available experimental results leads to the conclusion that the McLafferty fragmentation occurs within the terbody complex initially formed, with no prior ligand exchange, the water molecule acting as a spectator partner.
Keywords
Enol Carbonyl Compound Isobutene Collision Induce Dissociation Neutral ReactantReferences
- 1.van der Rest, G.; Mourgues, P.; Nedev, H.; Audier, H.E. J. Am. Soc. Mass Spectrom. 2000, 11, 705–710.CrossRefGoogle Scholar
- 2.(a)Terlouw, J. K.; Heerma, W.; Burgers, P. C.; Holmes, J. L. Can. J. Chem. 1984, 62, 289.CrossRefGoogle Scholar
- 2.(b)Postma, R.; van Helden, S. P.; van Lenthe, J. H.; Ruttink, P. J. A.; Terlouw, J. K.; Holmes, J. L. Org. Mass Spectrom. 1988, 23, 503.CrossRefGoogle Scholar
- 3.van der Rest, G.; Mourgues, P.; Nedev, H.; Audier, H. E. J. Am. Chem. Soc. 2002, 124, 5561–5569.CrossRefGoogle Scholar
- 4.Martrenchard, S.; Dedonder-Lardeux, C.; Jouvet, C.; Rockland, U.; Solgadi, D. J. Phys. Chem. 1995, 99, 13716.CrossRefGoogle Scholar
- 5.Freriks, I. L.; de Koning, L. J.; Nibbering, N. M. M. J. Org. Chem. 1992, 57, 5976.CrossRefGoogle Scholar
- 6.(a)Brutschy, B. J. Phys. Chem. 1990, 94, 8637.CrossRefGoogle Scholar
- 6.(b)Brutschy, B.; Eggert, J.; James, C.; Baumgärtel, H. J. Phys. Chem. 1991, 95, 5041,CrossRefGoogle Scholar
- 6.(c)Riehn, C.; Lahmann, C.; Brutschy, B. J. Phys. Chem. 1992, 96, 3626.CrossRefGoogle Scholar
- 7.Troude, V.; van der Rest, G.; Mourgues, P.; Audier, H. E. J. Am. Chem. Soc. 1997, 119, 9287.CrossRefGoogle Scholar
- 8.Tu, Y.; Holmes, J. L. J. Am. Chem. Soc. 2000, 122, 3695.CrossRefGoogle Scholar
- 9.de Visser, S. P.; de Koning, L. J.; Nibbering, N. M. M. J. Am. Chem. Soc. 1998, 120, 1517.CrossRefGoogle Scholar
- 10.van der Rest, G.; Jensen, L. B.; Mourgues, P.; Audier, H., unpublishedGoogle Scholar
- 11.Kofel, P.; Allemann, M.; Kellerhals, H. P.; Wanczek, K. P. Int. J. Mass Spectrom. Ion Processes 1985, 65, 97.CrossRefGoogle Scholar
- 12.Caravatti, P.; Allemann, M. Org. Mass Spectrom. 1991, 26, 514.CrossRefGoogle Scholar
- 13.Sievers, H. L.; Grützmacher, H. F.; Caravatti, P. Int. J. Mass Spectrom. Ion Processes 1996, 157/158, 283.CrossRefGoogle Scholar
- 14.Frisch, M. J.; Trucks, G. W.; Schegel, H. B.; Scuseria, G. E., et al. Gaussian 98, Revision A.6; Gaussian Inc.: Pittsburgh, PA, 1998.Google Scholar
- 15.Bouchoux, G.; Chamot-Rooke, J.; Leblanc, D.; Mourgues, P.; Sablier, M. ChemPhysChem. 2001, 4, 235–241CrossRefGoogle Scholar
- 16.Hunter, E.; Lias, S. G. J. Chem. Phys. Ref. Data 1998, 27, 413.CrossRefGoogle Scholar
- 17.Audier, H. E.; McMahon, T. B. J. Am. Chem. Soc. 1994, 116, 8294–8299.CrossRefGoogle Scholar
- 18.Bouchoux, G. Mass Spectrom Rev. 1988, 7; 1–39;CrossRefGoogle Scholar
- 18.(a)ibid 203–255.CrossRefGoogle Scholar
- 19.van der Rest, G.; Jensen, L. B.; Mourgues, P.; Audier, H. E., unpublishedGoogle Scholar
- 20.van der Rest, G.; Nedev, H.; Chamot-Rooke, J.; Mourgues, P.; McMahon, T. B.; Audier, H. E. Int. J. Mass Spectrom. 2000, 202, 161–174.CrossRefGoogle Scholar
- 21.McLafferty, F. W.; Turecek, F. Interpretation of Mass Spectra, 4th ed. University Science Books: Mill Valey, CA, 1993, pp 1–371.Google Scholar