Advertisement

Decomposition of protonated formic acid: One transition state—Two product channels

  • Osamu Sekiguchi
  • Vebjørn Bakken
  • Einar Uggerud
Focus: McLafferty Rearrangement

Abstract

The unimolecular chemistry of protonated formic acid. [HCOOH]H+. has been investigated by analyzing the fragmentation of metastable ions (MI) during flight in a sector mass spectrometer. and by proton transfer to formic acid in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. High level ab initio calculations have been used to model the relevant parts of the potential energy surface (PES). In addition. ab initio direct dynamics calculations have been conducted. tracing out 60 different reaction trajectories. The only stable isomer in the mass spectrometric experiments is HC(OH) 2 + . which is the precursor to both observed ionic products. HCO+ and H3O+. via the same saddle point of the potential energy surface. The detailed motion of the dissociating molecule during passage of the post-transition state region of the PES therefore determines which product ion is formed. After passing the TS a transient HC(O)OH 2 + molecule is first formed. High total energy increases the probability that the nascent water molecule will have sufficient speed to escape the HCO+ moiety. Otherwise. typically at low energies. the two units recombine. upon which intra-complex proton transfer is very likely. Eventually. this will give the more stable H3O+.

Keywords

Proton Transfer Potential Energy Surface HCOOH Collisionally Induce Dissociation Appearance Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mackay, G. I.; Hopkinson, A. C.; Bohme, D. K. J. Am. Chem. Soc. 1978, 100, 7460–7464.CrossRefGoogle Scholar
  2. 2.
    Holmes, J. L.; Mommers, A. A.; De Koster, C.; Heerma, W.; Terlouw, J.K. Chem. Phys. Lett. 1985, 115, 437–440.CrossRefGoogle Scholar
  3. 3.
    Tajima, S.; Fujizuka, A.; Nakajima, S.; Takahashi, Y.; Sckiguchi, O. Rapid Commun. Mass Spectrom. 2000, 14, 1195–1199.CrossRefGoogle Scholar
  4. 4.
    Hopkinson, A. C.; Yates, K.; Csizmadia, I.G. J. Chem. Phys. 1970, 52, 1784–1789.CrossRefGoogle Scholar
  5. 5.
    Srikanth, R.; Bhanuprakash, K.; Srinivas, R.; Wong, C.Y.; Terlouw, J. K. J. Mass Spectrom. 2004, 39, 303–309.CrossRefGoogle Scholar
  6. 6.
    Cheung, Y.-S.; Li, W.-K. J. Mol. Struct. (Theochem). 1995, 333, 135–145.CrossRefGoogle Scholar
  7. 7.
    Glosik, J.; Jordan, A.; Skalsky, V.; Lindinger, W. Int. J. Mass Spectrom. Ion Processes 1993, 129, 109–116.CrossRefGoogle Scholar
  8. 8.
    Olah, G. A.; White, A. M. J. Am. Chem. Soc. 1967, 89, 3591.CrossRefGoogle Scholar
  9. 9.
    Minkwitz, R.; Schneider, S.; Seifert, M.; Hartl, H. Zeitschrift für Anorganische und Allgemeine Chemie 1996, 622, 1404–1410.CrossRefGoogle Scholar
  10. 10.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Mongomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P.M.W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzales, A.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian 98; Gaussian Inc.: Pittsburgh, PA, 1998.Google Scholar
  11. 11.
    Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.CrossRefGoogle Scholar
  12. 12.
    Gonzales, C.; Schlegel, H. B. J. Phys. Chem. 1989, 90, 2154.CrossRefGoogle Scholar
  13. 13.
    Curtiss, L. A.; Raghavachari, K.; Trucks, G.W.; Pople, J.A. J. Chem. Phys. 1991, 94, 7221.CrossRefGoogle Scholar
  14. 14.
    Helgaker, T.; Uggerud, E.; Jensen, H. J. A. Chem. Phys. Lett. 1990, 173, 145–150.CrossRefGoogle Scholar
  15. 15.
    Chen, W.; Hase, W. L.; Schlegel, H. B. Chem. Phys. Lett. 1994, 228, 436–442.CrossRefGoogle Scholar
  16. 16.
    Bakken, V.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 1999, 111, 8773–8777.CrossRefGoogle Scholar
  17. 17.
    Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B. J. Chem. Phys. 1999, 111, 3800–3805.CrossRefGoogle Scholar
  18. 18.
    Hase, W. L. In Encyclopedia of Computational Chemistry. Schleyer, P. v. R; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollmann, P. A.; Schaefer, H. F., III; Schreiner, P. R. Eds. J. Wiley and Sons Ltd.: Chichester, 1998, pp402–407.Google Scholar
  19. 19.
    Hvistendahl, G.; Uggerud, E. Org. Mass Spectrom. 1991, 26, 67–73.CrossRefGoogle Scholar
  20. 20.
    Pritchard, H.; Thynne, J. C. J.; Harrison, A. G. Can. J. Chem. 1968, 46, 2141–2146.CrossRefGoogle Scholar
  21. 21.
    Freeman, C. G.; Harland, P. W.; McEwan, M. J. Austr. J. Chem. 1978, 31, 2157–2160.CrossRefGoogle Scholar
  22. 22.
    Villinger, H.; Saxer, A.; Richter, R.; Lindinger, W. Chem. Phys. Lett. 1978, 96, 513–516.CrossRefGoogle Scholar
  23. 23.
    Villinger, H.; Richter, R.; Lindinger, W. Int. J. Mass Spectrom. Ion Phys. 1983, 51, 25–30.CrossRefGoogle Scholar
  24. 24.
    Villinger, H.; Saxer, A.; Bryant, H.; Lindinger, W. Proceedings of the 16th International Conference on Phenom. Ioniz. Gases; 1983. pp 572–573.Google Scholar
  25. 25.
    Schalley, C. A.; Schroeder, D.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1996, 153, 173–199.CrossRefGoogle Scholar
  26. 26.
    Ha, T. K.; Nguyen, M. T. J. Phys. Chem. 1984, 88, 4295–4298.CrossRefGoogle Scholar
  27. 27.
    Lopez, R.; Rio, E. D.; Menendez, M. I.; Sordo, T. L. J. Comput. Chem. 1999, 20, 1432–1443.CrossRefGoogle Scholar
  28. 28.
    Lias, S. G.; Rosenstock, H. M.; Deard, K.; Steiner, B. W.; Herron, J. T.; Holmes, J. H.; Levin, R. D.; Liebman, J. F.; Kafafi, S. A.; Bartmess, J. E.; Hunter, E. F.; Linstrom, P. J.; Mallard, W. G. In NIST Chemistry Webbook; (http://webbook.nist.goc/chemistry), 2002.Google Scholar
  29. 29.
    Hogeveen, H. Recueil des Travaux Chimiques des Pays-Bas 1968, 87, 1313–1317.CrossRefGoogle Scholar
  30. 30.
    Hogeveen, H.; Mackor, E. L.; Ros, P.; Schachtschneider, J. H. Recueil des Travaux Chimiques des Pays-Bas 1968, 87, 1057–1064.CrossRefGoogle Scholar
  31. 31.
    Ros, P. J. Chem. Phys. 1968, 49, 4902–4916.CrossRefGoogle Scholar
  32. 32.
    Benoit, F. M.; Harrison, A. G. J. Am. Chem. Soc. 1977, 99, 3980–3984.CrossRefGoogle Scholar
  33. 33.
    Bagno, A.; Scorrano, G. J. Phys. Chem. 1996, 100, 1536–1544.CrossRefGoogle Scholar
  34. 34.
    Windus, T. L.; Gordon, M. S. J. Am. Chem. Soc. 1991, 113, 4356–4357.CrossRefGoogle Scholar
  35. 35.
    Windus, T. L.; Gordon, M. S. Theor. Chim. Acta. 1992, 83, 21–30.CrossRefGoogle Scholar
  36. 36.
    Minyaev, R. M.; Wales, D. J. J. Chem. Phys. 1994, 98, 7942–7944.CrossRefGoogle Scholar
  37. 37.
    Lin, H. Y.; Ridge, D. P.; Vulpius, T.; Uggerud, E. J. Am. Chem. Soc. 1994, 116, 2996.CrossRefGoogle Scholar
  38. 38.
    Zwier, T. S.; Bierbaum, V. M.; Ellison, G. B.; Leone, S. R. J. Chem. Phys. 1980, 5426.Google Scholar
  39. 39.
    Weisshaar, J. C.; Zwier, T. S.; Leone, S. R. J. Chem. Phys. 1981, 75, 4873.CrossRefGoogle Scholar
  40. 40.
    Bueker, H. H.; Uggerud, E. J. Phys. Chem. 1995, 99, 5945.CrossRefGoogle Scholar
  41. 41.
    Bueker, H.-H.; Helgaker, T.; Ruud, K.; Uggerud, E. J. Phys. Chem. 1996, 100, 15388.CrossRefGoogle Scholar
  42. 42.
    Bakken, V. (http://folk.uio.no/vebjornb/work/hcooh2+/), 2004.Google Scholar
  43. 43.
    Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. J. Am. Chem. Soc. 2001, 123, 130–134.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Osamu Sekiguchi
    • 1
  • Vebjørn Bakken
    • 1
  • Einar Uggerud
    • 1
  1. 1.Department of ChemistryUniversity of OsloOsloNorway

Personalised recommendations