Modeling deoxyribose radicals by neutralization-reionization mass spectrometry. Part 1. Preparation, dissociations, and energetics of 2-hydroxyoxolan-2-yl radical, neutral isomers, and cations

  • Shetty Vivekananda
  • Martin Sadílek
  • Xiaohong Chen
  • František TurečekEmail author
Focus: McLafferty Rearrangement


Collisional neutralization of several isomeric C4H7O2 cations is used to generate radicals that share some structural features with transient species that are thought to be produced by radiolysis of 2-deoxyribose. The title 2-hydroxyoxolan-2-yl radical (1) undergoes nearly complete dissociation when produced by femtosecond electron transfer from thermal organic electron donors dimethyl disulfide and N,N-dimethylaniline in the gas phase. Product analysis, isotope labeling (2H and 18O), and potential energy surface mapping by ab initio calculations at the G2(MP2) and B3-PMP2 levels of theory and in combination with Rice-Ramsperger-Kassel-Marcus (RRKM) kinetic calculations are used to assign the major and some minor pathways for 1 dissociations. The major (∼90%) pathway is initiated by cleavage of the ring C-5-O bond in 1 and proceeds to form ethylene and ·CH2COOH as main products, whereas loss of a hydrogen atom forms 4-hexenoic acid as a minor product. Loss of the OH hydrogen atom forming butyrolactone (2, ∼9%) and cleavage of the C-3−C-4 bonds (<1%) in 1 are other minor pathways. The major source of excitation in 1 is by Franck-Condon effects that cause substantial differences between the adiabatic and vertical ionization of 1 (5.40 and 6.89 eV, respectively) and vertical recombination in the precursor ion 1 + (4.46 eV). +NR+ mass spectra distinguish radical 1 from isomeric radicals 2-oxo-(1H)oxolanium (3), 1,3-dioxan-2-yl (9), and 1,3-dioxan-4-yl (10) that were generated separately from their corresponding ion precursors.


Ring Cleavage Butyrolactone Internal Energy Distribution Hydroxyl Hydrogen Atom Unimolecular Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Becker, D.; Sevilla, M. D. In Advances in Radiation Biology; Lett, J. T.; Sinclair, W.K., Eds.; Academic Press: San Diego, 1993; Vol. XVII; 121–180.Google Scholar
  2. 2.
    Kochetkov, N. K. Radiation Chemistry of Carbohydrates Pergamon Press: Oxford, 1979.Google Scholar
  3. 3.
    von Sonntag, C. Free-Radical Reactions of Carbohydrates as Studied by Radiation Techniques. Adv. Carbohydr. Chem. Biochem. 1980, 37, 7–77.CrossRefGoogle Scholar
  4. 4.
    von Sonntag, C. Carbohydrate Radicals: From Ethylene Glycol to DNA Strand Breakage. Int. J. Radiat. Biol. 1984, 46, 507–519.CrossRefGoogle Scholar
  5. 5.
    Ramirez-Arizmendi, L. E.; Heidbrink, J. L.; Guler, L. P.; Kenttamaa, H. I. Reactivity of Substituted Charged Phenyl Radicals Toward Components of Nucleic Acids. J. Am. Chem. Soc. 2003, 125, 2272–2281.CrossRefGoogle Scholar
  6. 6.
    Petzold, C. J.; Ramirez-Arizmendi, L. E.; Heidbrink, J. L.; Perez, J.; Kenttamaa, H. I. Gas-Phase Reactions of Charged Phenyl Radicals with Neutral Biomolecules Evaporated by Laser-Induced Acoustic Desorption. J. Am. Soc. Mass Spectrom. 2002, 13, 192–194.CrossRefGoogle Scholar
  7. 7.
    Schuchmann, M. N.; von Sonntag, C. Radiation Chemistry of Carbohydrates. 14. Hydroxyl Radical Induced Oxidation of D-Glucose in Oxygenated Aqueous Solution. J. Chem. Soc. Perkin Trans. 2 1977, 1958.Google Scholar
  8. 8.
    Madden, K. P.; Fessenden, R. W. ESR Study of the Attack of Photolytically Produced Hydroxyl Radicals on a-Methyl-D-Glucopyranoside in Aqueous Solution. J. Am. Chem. Soc. 1982, 104, 2578–2581.CrossRefGoogle Scholar
  9. 9.
    Colson, A. O.; Sevilla, M. D. Application of Molecular Orbital Theory to the Elucidation of Radical Processes Induced by Radiation Damage to DNA. Theor. Comput. Chem. 1999, 8, 245–277.CrossRefGoogle Scholar
  10. 10.
    Colson, A. O.; Sevilla, M. D. Elucidation of Primary Radiation Damage in DNA Through Application of ab Initio Molecular Orbital Theory. Int. J. Radiat. Biol. 1995, 67, 627–645.CrossRefGoogle Scholar
  11. 11.
    Luo, N.; Litvin, A.; Osman, R. Theoretical Studies of Ribose and Its Radicals Produced by Hydrogen Abstraction from Ring Carbons. J. Phys. Chem. A 1999, 103, 592–600.CrossRefGoogle Scholar
  12. 12.
    Miaskiewicz, K.; Osman, R. Theoretical Study on the Deoxyribose Radicals Formed by Hydrogen Abstraction. J. Am. Chem. Soc. 1994, 116, 232–238.CrossRefGoogle Scholar
  13. 13.(a)
    For the Most recent reviews of the technique see: Tureček, F. Transient Intermediates of Chemical Reactions by Neutralization-Reionization Mass Spectrometry. Top. Curr. Chem. 2003, 225, 77–129.CrossRefGoogle Scholar
  14. 13.(b)
    Zagorevskii, D. V.; Holmes, J. L. Neutralization-Reionization Mass Spectrometry Applied to Organometallic and Coordination Chemistry (Update: 1914–1998). Mass Spectrom. Rev. 1999, 18, 87–118.CrossRefGoogle Scholar
  15. 13.(c)
    Schalley, C. A.; Hornung, G.; Schroder, D.; Schwarz, H. Mass Spectrometric Approaches to the Reactivity of Transient Neutrals. Chem. Soc. Rev. 1998, 27, 91–104.CrossRefGoogle Scholar
  16. 14.
    Vivekananda, S.; Sadilek, M.; Chen, X.; Tureček, F. Modeling Deoxyribose Radicals by Neutralization-Reionization Mass Spectrometry. Part 2. Preparation, Dissociations and Energetics of 3-Hydroxyoxolan-3-yl Radical and Cation. J. Am. Soc. Mass Spectrom.; accompanying paper in this issue.Google Scholar
  17. 15.
    Mazzocchi, P. H.; Thomas, J.; Danisi, F. Photochemistry of N-Alkylpyrrolidinones in the Gas Phase and in Solution. J. Org. Chem. 1979, 44, 50–55.CrossRefGoogle Scholar
  18. 16.
    Bloomfield, J. J.; Lee, S. L. Control of Lithium Aluminum Hydride Reduction of Cyclic Dicarboxylic Acid Anhydrides to Produce g-Lactones or Diols. J. Org. Chem. 1967, 32, 3919–3924.CrossRefGoogle Scholar
  19. 17.
    Tureček, F.; Gu, M.; Shaffer, S. A. A Novel Tandem Quadrupole Acceleration-Deceleration Mass Spectrometer for Neutralization-Reionization Studies. J. Am. Soc. Mass Spectrom. 1992, 3, 493–501.CrossRefGoogle Scholar
  20. 18.
    Kuhns, D. W.; Shaffer, S. A.; Tran, T. B.; Tureček, F. The Methylthiomethyl Radical. A Variable-Time Neutralization-Reionization and ab Initio Study. J. Phys. Chem. 1994, 98, 4845–4853.CrossRefGoogle Scholar
  21. 19.
    Kuhns, D. W.; Tureček, F. Unimolecular Neutral and Ion Kinetics by Variable-Time Neutralization-Reionization Mass Spectrometry. Org. Mass Spectrom. 1994, 29, 463–469.CrossRefGoogle Scholar
  22. 20.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6; Gaussian, Inc: Pittsburgh PA, 1998.Google Scholar
  23. 21.(a)
    Becke, A. D. A New Mixing of Hartree-Fock and Local-Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377.CrossRefGoogle Scholar
  24. 21.(b)
    Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRefGoogle Scholar
  25. 22.
    Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.CrossRefGoogle Scholar
  26. 23.
    Mayer, I. Spin-projected EHF method. IV. Comparison of Potential Curves Given by Different One-Electron Methods. Adv. Quantum Chem. 1980, 12, 189–262.CrossRefGoogle Scholar
  27. 24.
    Schlegel, H. B. Potential Energy Curves Using Unrestricted Moeller-Plesset Perturbation Theory with Spin Annihilation. J. Chem. Phys 1986, 84, 4530–4534.CrossRefGoogle Scholar
  28. 25.
    Rauhut, G.; Pulay, P. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J. Phys. Chem. 1995, 99, 3093–3100.CrossRefGoogle Scholar
  29. 26.
    Curtiss, L. A.; Raghavachari, K.; Pople, J. A. Gaussian-2 Theory Using Reduced Moeller-Plesset Orders. J. Chem. Phys. 1993, 98, 1293–1298.CrossRefGoogle Scholar
  30. 27.
    Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies. J. Chem. Phys. 1987, 87, 5968–5975.CrossRefGoogle Scholar
  31. 28.
    M∅ller, C.; Plesset, M. S. Note on An Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622.CrossRefGoogle Scholar
  32. 29.
    Tureček, F.; Yao, C. Hydrogen Atom Addition to Cytosine, 1-Methylcytosine, and Cytosine-Water Complexes. A Computational Study of a Mechanistic Dichotomy. J. Phys. Chem A 2003, 107, 9221–9231.CrossRefGoogle Scholar
  33. 30.
    Tureček, F.; Syrstad, E. A. Mechanism and Energetics of Intramolecular Hydrogen Transfer Atom Transfer in Amide and Peptide Radicals and Cation-Radicals. J. Am. Chem. Soc. 2003, 125, 3353–3369.CrossRefGoogle Scholar
  34. 31.
    Tureček, F.; Vivekananda, S.; Sadílek, M.; Polášek, M. Lactone Enol Cation-Radicals: Gas-Phase Generation, Structure, Energetics, and Reactivity of the Ionized Enol of Butane-4-Lactone. J. Mass Spectrom. 2002, 37, 829–839.CrossRefGoogle Scholar
  35. 32.
    Tureček, F. Proton Affinity of Dimethyl Sulfoxide and Relative Stabilities of C2H6OS Molecules and C2H7OS+ Ions. J. Phys. Chem. A 1998, 102, 4703–4713.CrossRefGoogle Scholar
  36. 33.
    Zhu, L., Hase, W. L. Quantum Chemistry Program Exchange; Indiana University: Bloomington, IN, 1994; Program No. QCPE 644.Google Scholar
  37. 34.
    Frank, A. J.; Sadílek, M.; Ferrier, J. G.; Tureček, F. Sulfur Oxyacids and Radicals in the Gas Phase. A Variable-Time Neutralization-Photoexcitation-Reionization Mass Spectrometric and Ab Initio/RRKM Study. J. Am. Chem. Soc. 1997, 119, 12343–12353.CrossRefGoogle Scholar
  38. 35.
    McMahon, A. W.; Chowdhury, S. K.; Harrison, A. G. Negative Ion-Negative Ion Neutralization-Reionization (−NR−). Org. Mass Spectrom. 1989, 24, 620–624.CrossRefGoogle Scholar
  39. 36.
    Tureček, F.; Vivekananda, S.; Sadílek, M.; Polášek, M. Lactone Enols are Stable in the Gas Phase but Highly Unstable in Solution. J. Am. Chem. Soc. 2002, 124, 13282–13289.CrossRefGoogle Scholar
  40. 37.
    NIST Standard Reference Database No. 69; February 2000 Release. Scholar
  41. 38.
    Holmes, J. L. The Neutralization of Organic Cations. Mass Spectrom. Rev. 1989, 8, 513–539.CrossRefGoogle Scholar
  42. 39.
    Wong, T.; Terlouw, J. K.; Weiske, T.; Schwarz, H. The Neutralization-Reionization Mass Spectrum of C60. Int. J. Mass Spectrom. Ion Processes 1992, 113, R23.Google Scholar
  43. 40.
    Van Baar, B.; Weiske, T.; Terlouw, J. K.; Schwarz, H. Hydroxyacetylene. Production and Characterization of the Neutral Molecule, the Radical Cation, and the Dication in the Gas Phase. Angew. Chem. 1986, 25, 282–284.CrossRefGoogle Scholar
  44. 41.
    O’Hair, R. A. J.; Gronert, S.; DePuy, C. H.; Bowie, J. H. Gas Phase Ion Chemistry of the Acetic Acid Enolate Anion [CH2CO2H]. J. Am. Chem. Soc. 1989, 111, 3105–3106.CrossRefGoogle Scholar
  45. 42.
    Tureček, F.; Reid, P. J. Metastable States of Dimethyloxonium, (CH3)2OH·. Int. J. Mass Spectrom. 2003, 222, 49–61.CrossRefGoogle Scholar
  46. 43.
    Tureček, F. The Use of Kinetic Isotope Effects for the Determination of Internal Energy Distributions of Isolated Transient Species in the Gas Phase. Int. J. Mass Spectrom. 2003, 227, 327–338.CrossRefGoogle Scholar
  47. 44.
    Traeger, J. C.; Kompe, B. M. In Energetics of Organic Radicals; Simoes, J. A. M.; Greenburg, A.; Liebman, J.F., Eds.; Chapman and Hall: London 1996; 59–109.CrossRefGoogle Scholar
  48. 45.
    Griffin, L. L.; Traeger, J. C.; Hudson, C. E.; McAdoo, D. J. Why are Smaller Fragments Preferentially Lost from Radical Cations at Low Energies and Larger Ones at High Energies? An Experimental and Theoretical Study. Int. J. Mass Spectrom. 2002, 217, 23–44.CrossRefGoogle Scholar
  49. 46.
    Hunter, E. P. L.; Lias, S. G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656.CrossRefGoogle Scholar
  50. 47.
    Ruscic, B.; Litorja, M.; Asher, R. L. Ionization Energy of Methylene Revisited. Improved Values for the Enthalpy of Formation of CH2 and the Bond Dissociation Energy of CH3 via Simultaneous Solution of the Local Thermochemical Network. J. Phys. Chem. A 1999, 103, 8625–8633.CrossRefGoogle Scholar
  51. 48.
    Nguyen, M. T.; Raspoet, G.; Vanquickenborne, L. G. Contrasting Mechanism of the Hydration of Carbon Suboxide and Ketene. A Theoretical Study. J. Phys. Org. Chem. 2000, 13, 46–56.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Shetty Vivekananda
    • 1
  • Martin Sadílek
    • 1
  • Xiaohong Chen
    • 1
  • František Tureček
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations