Skip to main content
Log in

Development of an LC-MALDI method for the analysis of protein complexes

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

In this study, a two-dimensional LC-MALDI-TOF/TOF method has been developed for analyzing protein complexes. In our hands, the method has proven to be an excellent strategy for the analysis of protein complexes isolated in pull-down experiments. This is in part because the preservation of the chromatographic separation on a MALDI target yields an “unlimited” amount of time to obtain MS/MS spectra, making it possible to probe more deeply into complex samples. A brief statistical analysis was performed on the data obtained from the LC-MALDI-TOF/TOF system in order to better understand peptide fragmentation patterns under high-energy collision conditions. These statistical analyses provided some insight into how to evaluate the quality and accuracy of the database search results derived from the TOF/TOF-based analysis. The potential of the method was demonstrated by the successful identification of all the known penicillin-binding proteins in E. coli isolated using a drug-based pull-down with ampicillin as the bait. The performance of the LC-MALDI-TOF/TOF system was compared with that of an equivalent 2D LC-ESI-MS/MS approach, in the analysis of a protein bait-based pull-down. Regardless of the number of peptides identified in the ESI versus MALDI approach, the two approaches were found to be complementary. When the data is merged at the peptide level, the combined result gives higher Mascot scores and an overall higher confidence in protein identification than with either approach alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkins, M. R.; Sanchez, J. C.; Gooley, A. A.; Appel, R. D.; Humphery-Smith, I.; Hochstrasser, D. F.; Williams, K. L. Progress with Proteome Projects: Why All Proteins Expressed by a Genome Should be Identified and How To Do It. Biotechnol. Genet. Eng. Rev. 1995, 13, 19–50.

    Google Scholar 

  2. Graves, P. R.; Haystead, T. A. Molecular Biologist’s Guide to Proteomics. Microbiol. Mol. Biol. Rev. 2002, 66(1), p. 39–63.

    Article  CAS  Google Scholar 

  3. Pandey, A.; Mann, M. Proteomics to Study Genes and Genomes. Nature 2000, 405(6788), 837–846.

    Article  CAS  Google Scholar 

  4. Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422(6928), 198–207.

    Article  CAS  Google Scholar 

  5. O’Farrell, P. H. High Resolution Two-Dimensional Electrophoresis of Proteins. J. Biol.Chem. 1975, 250(10), 4007–4021.

    Google Scholar 

  6. Klose, J. Protein Mapping by Combined Isoelectric Focusing and Electrophoresis of Mouse Tissues. A Novel Approach to Testing for Induced Point Mutations in Mammals. Humangenetik. 1975, 26(3), 231–243.

    CAS  Google Scholar 

  7. Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B. Electrospray Interface for Liquid Chromatographs and Mass Spectrometers. Anal. Chem. 1985, 57(3), 675–679.

    Article  CAS  Google Scholar 

  8. Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60(20), 2299–2301.

    Article  CAS  Google Scholar 

  9. Hunt, D. F.; Zhu, N. Z.; Shabanowitz, J. Oligopeptide Sequence Analysis by Collision-Activated Dissociation of Multiply Charged Ions. Rapid Commun. Mass Spectrom. 1989, 3(4), 122–124.

    Article  CAS  Google Scholar 

  10. Covey, T. R.; Huang, E. C.; Henion, J. D. Structural Characterization of Protein Tryptic Peptides via Liquid Chromatography/Mass Spectrometry and Collision-Induced Dissociation of Their Doubly Charged Molecular Ions. Anal. Chem. 1991, 63(13), 1193–1200.

    Article  CAS  Google Scholar 

  11. Yates, J. R. I. I. I.; Speicher, S.; Griffin, P. R.; Hunkapiller, T. Peptide Mass Maps: A Highly Informative Approach to Protein Identification. Anal Biochem. 1993, 214(2), 397–408.

    Article  CAS  Google Scholar 

  12. James, P.; Quadroni, M.; Carafoli, E.; Gonnet, G. Protein Identification by Mass Profile Fingerprinting. Biochem. Biophys. Res. Commun. 1993, 195(1), 58–64.

    Article  CAS  Google Scholar 

  13. Kaufmann, R.; Spengler, B.; Lutzenkirchen, F. Mass Spectrometric Sequencing of Linear Peptides by Product-Ion Analysis in a Reflectron Time-of-Flight Mass Spectrometer Using Matrix-Assisted Laser Desorption Ionization. Rapid Commun. Mass Spectrom. 1993, 7(10), 902–910.

    Article  CAS  Google Scholar 

  14. Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Evaluation of Two-Dimensional Gel Electrophoresis-Based Proteome Analysis Technology. Proc. Natl. Acad. Sci. U.S.A. 2000, 97(17), 9390–9395.

    Article  CAS  Google Scholar 

  15. Langen, H.; Takacs, B.; Evers, S.; Berndt, P.; Lahm, H. W.; Wipf, B.; Gray, C.; Fountoulakis, M. Two-Dimensional Map of the Proteome of. Haemophilus influenzae. Electrophoresis 2000, 21(2), 411–429.

    Article  CAS  Google Scholar 

  16. Fountain, S. T.; Lee, H.; Lubman, D. M. Ion Fragmentation Activated by Matrix-Assisted Laser Desorption/Ionization in an Ion-Trap/Reflectron Time-of-Flight Device. Rapid Commun. Mass Spectrom. 1994, 8(5), 407–416.

    Article  CAS  Google Scholar 

  17. Li, Y.; McIver, R. T. Jr. Detection Limits for Matrix-Assisted Laser Desorption of Polypeptides with an External Ion Source Fourier-Transform Mass Spectrometer. Rapid Commun. Mass Spectrom. 1994, 8(9), 743–749.

    Article  CAS  Google Scholar 

  18. Doroshenko, V. M.; Cotter, R. J. High-Performance Collision-Induced Dissociation of Peptide Ions Formed by Matrix-Assisted Laser Desorption/Ionization in a Quadrupole Ion Trap Mass Spectrometer. Anal. Chem. 1995, 67(13), 2180–2187.

    Article  CAS  Google Scholar 

  19. Medzihradszky, K. F.; Campbell, J. M.; Baldwin, M. A.; Falick, A. M.; Juhasz, P.; Vestal, M. L.; Burlingame, A. L. The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer. Anal. Chem. 2000, 72(3), 552–558.

    Article  CAS  Google Scholar 

  20. Loboda, A. V.; Krutchinsky, A. N.; Bromirski, M.; Ens, W.; Standing, K. G. A Tandem Quadrupole/Time-of-Flight Mass Spectrometer with a Matrix-Assisted Laser Desorption/Ionization Source: Design and Performance. Rapid Commun. Mass Spectrom. 2000, 14(12), 1047–1057.

    Article  CAS  Google Scholar 

  21. Link, A. J.; Eng, J.; Schieltz, D. M.; Carmack, E.; Mize, G. J.; Morris, D. R.; Garvik, B. M.; Yates, J. R., III. Direct Analysis of Protein Complexes Using Mass Spectrometry. Nat. Biotechnol. 1999, 17(7), 676–682.

    Article  CAS  Google Scholar 

  22. Washburn, M. P.; Wolters, D.; Yates, J. R., III. Large-Scale Analysis of the Yeast Proteome by Multidimensional Protein Identification Technology. Nat. Biotechnol. 2001, 19(3), 242–247.

    Article  CAS  Google Scholar 

  23. Wolters, D. A.; Washburn, M. P.; Yates, J. R., III. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 2001, 73(23), 5683–5690.

    Article  CAS  Google Scholar 

  24. Wall, D. B.; Berger, S. J.; Finch, J. W.; Cohen, S. A.; Richardson, K.; Chapman, R.; Drabble, D.; Brown, J.; Gostick, D. Continuous Sample Deposition from Reverse-Phase Liquid Chromatography to Tracks on a Matrix-Assisted Laser Desorption/Ionization Precoated Target for the Analysis of Protein Digests. Electrophoresis 2002, 23(18), 3193–3204.

    Article  CAS  Google Scholar 

  25. Hansen, K. C.; Schmitt-Ulms, G.; Chalkley, R. J.; Hirsch, J.; Baldwin, M. A.; Burlingame, A. L. Mass Spectrometric Analysis of Protein Mixtures at Low Levels Using Cleavable 13C-ICAT and Multi-Dimensional Chromatography. Mol. Cell Proteomics 2003, 2, 299–314.

    CAS  Google Scholar 

  26. Ericson, C.; Phung, Q. T.; Horn, D. M.; Peters, E. C.; Fitchett, J. R.; Ficarro, S. B.; Salomon, A. R.; Brill, L. M.; Brock, A. An Automated Noncontact Deposition Interface for Liquid Chromatography Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2003, 75(10), 2309–2315.

    Article  CAS  Google Scholar 

  27. Person, M. D.; Lo, H. H.; Towndrow, K. M.; Jia, Z.; Monks, T. J.; Lau, S. S. Comparative Identification of Prostanoid Inducible Proteins by LC-ESI-MS/MS and MALDI-TOF Mass Spectrometry. Chem. Res. Toxicol. 2003, 16(6), 757–767.

    Article  CAS  Google Scholar 

  28. Stevens, S. M. Jr.; Kem, W. R.; Prokai, L. Investigation of Cytolysin Variants by Peptide Mapping: Enhanced Protein Characterization Using Complementary Ionization and Mass Spectrometric Techniques. Rapid Commun. Mass Spectrom. 2002, 16(22), 2094–2101.

    Article  CAS  Google Scholar 

  29. Bodnar, W. M.; Blackburn, R. K.; Krise, J. M.; Moseley, M. A. Exploiting the Complementary Nature of LC/MALDI/MS/MS and LC/ESI/MS/MS for Increased Proteome Coverage. J. Am. Soc. Mass Spectrom. 2003, 14(9), 971–979.

    Article  CAS  Google Scholar 

  30. von Rechenberg, M.; Ho, J.; Blake, K.; Zhen, Y.; Chepanoske, C. L.; Kery, V. Ampicillin/penicillin binding protein interactions as a model drug/target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification, manuscript in preparation

  31. Keil-Dlouha, V. V.; Zylber, N.; Imhoff, J.; Tong, N.; Keil, B. Proteolytic Activity of Pseudotrypsin. FEBS Lett. 1971, 16(4), 291–295.

    Article  CAS  Google Scholar 

  32. Cech, N. B.; Enke, C. G. Relating Electrospray Ionization Response to Nonpolar Character of Small Peptides. Anal. Chem. 2000, 72(13), 2717–2723.

    Article  CAS  Google Scholar 

  33. Kratzer, R.; Eckerskorn, C.; Karas, M.; Lottspeich, F. Suppression Effects in Enzymatic Peptide Ladder Sequencing Using Ultraviolet-Matrix Assisted Laser Desorption/Ionization Mass Spectormetry. Electrophoresis 1998, 19(11), 1910–1919.

    Article  CAS  Google Scholar 

  34. Spengler, B. Post-Source Decay Analysis in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biomolecules. J. Mass Spectrom. 1997, 32, 1019–1036.

    Article  CAS  Google Scholar 

  35. Mann, M. Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, GA, 1995; p 639

  36. Gay, S.; Binz, P. A.; Hochstrasser, D. F.; Appel, R. D. Modeling Peptide Mass Fingerprinting Data Using the Atomic Composition of Peptides. Electrophoresis 1999, 20(18), 3527–3534.

    Article  CAS  Google Scholar 

  37. Dongre, A. R.; Jones, J. L.; Somoyi, A.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365–8374.

    Article  CAS  Google Scholar 

  38. Tabb, D. L.; Smith, L. L.; Breci, L. A.; Wysocki, V. H.; Lin, D.; Yates, J. R. III Statistical Characterization of Ion Trap Tandem Mass Spectra from Doubly Charged Tryptic Peptides. Anal. Chem. 2003, 73(5), 1155–1163.

    Article  CAS  Google Scholar 

  39. Breci, L. A.; Tabb, D. L.; Yates, J. R., III; Wysocki, V. H. Cleavage N-terminal to Proline: Analysis of a Database of Peptide Tandem Mass Spectra. Anal. Chem 2003, 73(9), 1963–1971.

    Article  CAS  Google Scholar 

  40. Huang, Y.; Wysocki, V. H.; Tabb, D. L.; Yates, J. R. III. The Influence of Histidine on Cleavage C-Terminal to Acidic Residues in Doubly Protonated Tryptic Peptides. Int. J. Mass Spectrom. 2002, 219, 233–244.

    Article  CAS  Google Scholar 

  41. Gu, C.; Tsaprailis, G.; Breci, L.; Wysocki, V. H. Selective Gas-Phase Cleavage at the Peptide Bond C-terminal to Aspartic Acid in Fixed-charge Derivatives of Asp-Containing Peptides. Anal. Chem. 2000, 72(23), 5804–5813.

    Article  CAS  Google Scholar 

  42. Quin, J.; Chait, B. T. Preferential Fragmentation of Protonated Gas-Phased Peptide Ions Adjacent to Acidic Amino Acid Residues. J. Am. Chem. Soc. 1995, 117, 5411–5412.

    Article  Google Scholar 

  43. Lee, S.; Kim, H. S.; Beauchamp, J. L. Salt Bridge Chemistry Applied to Gas-Phased Peptide Sequencing: Selective Fragmentation of Sodiated Gas-Phase Peptide Ions Adjacent to Aspartic Acid Residues. J. Am. Chem. Soc. 1998, 120(13), 3188–3195.

    Article  CAS  Google Scholar 

  44. Papayannopoulos, I. A. The Interpretation of CollisionInduced Dissociation Tandem Mass Spectra of Peptides. Mass. Spectrom. Rev. 1995, 14, 49–73.

    Article  CAS  Google Scholar 

  45. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat. Biotechnol. 1999, 17(10), 994–999.

    Article  CAS  Google Scholar 

  46. Krause, E.; Wenschuh, H.; Jungblut, P. R. The Dominance of Arginine-Containing Peptides in MALDI-Derived Tryptic Mass Fingerprints of Proteins. Anal. Chem. 1999, 71(19), 4160–4165.

    Article  CAS  Google Scholar 

  47. Brancia, F. L.; Oliver, S. G.; Gaskell, S. J. Improved Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Tryptic Hydrolysates of Proteins Following Guanidination of Lysine-Containing Peptides. Rapid Commun. Mass Spectrom. 2000, 14(21), 2070–2073.

    Article  CAS  Google Scholar 

  48. Beardsley, R. L.; Karty, J. A.; Reilly, J. P. Enhancing the Intensities of Lysine-Terminated Tryptic Peptide Ions in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14(23), 2147–2153.

    Article  CAS  Google Scholar 

  49. Juhasz, P.; Krishnan, S.; Martin S. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics. 2001. Chicago, IL

  50. Waxman, D. J.; Strominger, J. L. Penicillin-Binding Proteins and the Mechanism of Action of β-Lactam Antibiotics. Annu. Rev. Biochem. 1983, 52, 825–869.

    Article  CAS  Google Scholar 

  51. Schiffer, G.; Holtje, J. V. Cloning and Characterization of PBP 1C, a Third Member of the Multimodular Class A Penicillin-Binding Proteins of Escherichia coli. J. Biol. Chem. 1999, 274(45), 32031–32039.

    Article  CAS  Google Scholar 

  52. Georgopapadakou, N. H.; Smith, S. A.; Cimarusti, C. M.; Sykes, R. B. Binding of Monobactams to Penicillin-Binding Proteins of Escherichia coli and Staphylococcus aureus: Relation to Antibacterial Activity. Antimicrob. Agents Chemother 1983, 23(1), 98–104.

    CAS  Google Scholar 

  53. Rigaut, G.; Shevchenko, A.; Rutz, B.; Wilm, M.; Mann, M.; Seraphin, B. A Generic Protein Purification Method for Protein Complex Characterization and Proteome Exploration. Nat. Biotechnol 1999, 17(10), 1030–1032.

    Article  CAS  Google Scholar 

  54. Puig, O.; Caspary, F.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Seraphin, B. The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods 2001, 24(3), 218–229.

    Article  CAS  Google Scholar 

  55. Penengo, L.; Rubin, C.; Yarden, Y.; Gaudino, G. c-Cbl is a Critical Modulator of the Ron Tyrosine Kinase Receptor. Oncogene 2003, 22(24), 3669–3679.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Peltier.

Additional information

Published online April 9, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhen, Y., Xu, N., Richardson, B. et al. Development of an LC-MALDI method for the analysis of protein complexes. J Am Soc Mass Spectrom 15, 803–822 (2004). https://doi.org/10.1016/j.jasms.2004.02.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2004.02.004

Keywords

Navigation