Generation and manipulation of sodium cationized peptides in the gas phase

Articles

Abstract

Sodiated peptides are often generated by electrospray ionization (ESI) of solutions containing peptides and a sodium salt. Fragmentation of singly sodiated, singly charged peptide ions commonly provides specific sequence information. However, these ions may be difficult to form by directly electrospraying a mixture. In the application of a recently described technique for forming metal containing peptide ions in the gas phase, singly sodiated, singly charged ions are formed via cation-switching ion/ion reactions of multiply protonated peptides. Proton transfer ion/ion reactions can also be used to form [M + Na]+ through the reduction of charge states of multiply charged, singly sodiated ions. The specificity and flexibility of the techniques employed provide a highly controlled means of generating sodiated peptide and protein ions. Thus, the methodologies presented here have potential for forming ions not readily observed via ESI or MALDI. Furthermore, the use of ion/ion reactions to form sodiated peptides facilitates direct comparisons of the fragmentation behavior of [M + Na]+ peptides formed in the absence of solvent with that of [M + Na]+ peptides generated by directly electrospraying a sodium salt/peptide mixture. Thus, in addition to descriptions of the formation of [M + Na]+ peptides in the gas phase using ion/ion reactions, results from CID of reaction products are presented herein.

References

  1. 1.
    Teesch, L. M.; Adams, J. Intrinsic Interactions Between Alkaline Earth Metal Ions and Peptides: A Gas-Phase Study. J. Am. Chem. Soc. 1990, 112, 4110–4120.CrossRefGoogle Scholar
  2. 2.
    Grese, R. P.; Cerny, R. L.; Gross, M. L. Metal Ion-Peptide Interactions in the Gas Phase: A Tandem Mass Spectrometry Study of Alkali Metal Cationized Peptides. J. Am. Chem. Soc. 1989, 111, 2835–2842.CrossRefGoogle Scholar
  3. 3.
    Hu, P.; Sorensen, C.; Gross, M. L. Influences of Peptide Side Chains on the Metal Ion Binding Site in Metal Ion-Cationized Peptides: Participation of Aromatic Rings in Metal Chelation. J. Am. Soc. Mass Spectrom. 1995, 6, 1079–1085.CrossRefGoogle Scholar
  4. 4.
    Hu, P.; Loo, J. A. Gas-Phase Coordination Properties of Zn2+, Cu2+, Ni2+, and Co2+ with Histidine-Containing Peptides. J. Am. Chem. Soc. 1995, 117, 11314–11319.CrossRefGoogle Scholar
  5. 5.
    Lin, T.; Glish, G. L. C-Terminal Peptide Sequencing via Multistage Mass Spectrometry. Anal. Chem. 1998, 70, 5162–5165.CrossRefGoogle Scholar
  6. 6.
    Lin, T.; Payne, A. H.; Glish, G. L. Dissociation Pathways of Alkali-Cationized Peptides: Opportunities for C-Terminal Peptide Sequencing. J. Am. Soc. Mass Spectrom. 2001, 12, 497–504.CrossRefGoogle Scholar
  7. 7.
    Lin, T.; Payne, A. H.; Glish, G. L. C-Terminal Peptide Sequencing using Acetylated Peptides with MSn in a Quadrupole Ion Trap. Analyst 2000, 125, 635–640.CrossRefGoogle Scholar
  8. 8.
    Renner, D.; Spiteller, G. Linked Scan Investigation of Peptide Degradation Initiated by Liquid Secondary Ion Mass Spectrometry. Biomed. Environ. Mass Spectrom. 1988, 15, 75–77.CrossRefGoogle Scholar
  9. 9.
    Tang, X.; Ens, W.; Standing, K. G.; Westmore, J. B. Daughter Ion Mass Spectra from Cationized Molecules of Small Oligopeptides in a Reflecting Time-of-Flight Mass Spectrometer. Anal. Chem. 1988, 60, 1791–1799.CrossRefGoogle Scholar
  10. 10.
    Kulik, W.; Heerma, W.; Terlouw, J. K. A Novel Fragmentation Process in the Fast-Atom Bombardment/Tandem Mass Spectra of Peptides Cationized with Na+, Determining the Identity of the C-Terminal Amino Acid. Rapid Commun. Mass Spectrom. 1989, 3, 276–279.CrossRefGoogle Scholar
  11. 11.
    Feng, W. Y.; Gronert, S.; Fletcher, K. A.; Warres, A.; Lebrilla, C. B. The Mechanism of C-Terminal Fragments in Alkali Metal Ion Complexes of Peptides. Int. J. Mass Spectrom. 2003, 222, 117–134.CrossRefGoogle Scholar
  12. 12.
    Thorne, G. C.; Ballard, K. D.; Gaskell, S. J. Metastable Decomposition of Peptide [M + H]+ Ions via Rearrangement Involving Loss of the C-Terminal Amino Acid Residue. J. Am. Soc. Mass Spectrom. 1990, 1, 249–257.CrossRefGoogle Scholar
  13. 13.
    Gonzalez, J.; Besada, V.; Garay, H.; Reyes, O.; Padron, G.; Tambara, Y.; Takao, T.; Shimonishi, Y. Effect of the Position of a Basic Amino Acid on C-Terminal Rearrangement of Protonated Peptides upon Collision-Induced Dissociation. J. Mass Spectrom. 1996, 31, 150–158.CrossRefGoogle Scholar
  14. 14.
    Lee, S.-W.; Kim, H. S.; Beauchamp, J. L. Salt Bridge Chemistry Applied to Gas-Phase Peptide Sequencing: Selective Fragmentation of Sodiated Gas-Phase Peptide Ions Adjacent to Aspartic Acid Residues. J. Am. Chem. Soc. 1998, 120, 3188–3195.CrossRefGoogle Scholar
  15. 15.
    Tomlinson, M. J.; Scott, J. R.; Wilkins, C. L.; Wright, J. B.; White, W. E. Fragmentation of an Alkali Metal-Attached Peptide Probed by Collision-Induced Dissociation Fourier Transform Mass Spectrometry and Computational Methodology. J. Mass Spectrom. 1999, 34, 958–968.CrossRefGoogle Scholar
  16. 16.
    Newton, K. A.; McLuckey, S. A. Gas-Phase Peptide/Protein Cationizing Agent Switching via Ion/Ion Reactions. J. Am. Chem. Soc. 2003, 125, 12404–12405.CrossRefGoogle Scholar
  17. 17.
    Wells, J. M.; Chrisman, P. A.; McLuckey, S. A. Dueling Electrospray: Instrumentation to Study Ion/Ion Reactions of Electrospray-Generated Cations and Anions. J. Am. Soc. Mass Spectrom. 2002, 13, 614–622.CrossRefGoogle Scholar
  18. 18.
    Badman, E. R.; Chrisman, P. A.; McLuckey, S. A. A Quadrupole Ion Trap Mass Spectrometer with Three Independent Ion Sources for the Study of Gas-Phase Ion/Ion Reactions. Anal. Chem. 2002, 74, 6237–6243.CrossRefGoogle Scholar
  19. 19.
    Reid, G. E.; Wells, J. M.; Badman, E. R.; McLuckey, S. A. Performance of a Quadrupole Ion Trap Mass Spectrometer Adapted for Ion/Ion Reaction Studies. Int. J. Mass Spectrom. 2003, 222, 243–258.CrossRefGoogle Scholar
  20. 20.
    Wells, J. M.; Chrisman, P. A.; McLuckey, S. A. Formation and Characterization of Protein–Protein Complexes in Vacuo. J. Am. Chem. Soc. 2003, 125, 7238–7249.CrossRefGoogle Scholar
  21. 21.
    Stephenson, J. L., Jr.; McLuckey, S. A. Ion/Ion Reactions in the Gas-Phase: Proton Transfer Reactions Involving Multiply-Charged Proteins. J. Am. Chem. Soc. 1996, 118, 7390–7397.CrossRefGoogle Scholar
  22. 22.
    Stephenson, J. L., Jr.; McLuckey, S. A. Ion/Ion Reactions for Oligopeptide Mixture Analysis: Application to Mixtures Comprised of 0.5–100 kDa Components. J. Am. Soc. Mass Spectrom. 1998, 9, 585–596.CrossRefGoogle Scholar
  23. 23.
    Newton, K. A.; Chrisman, P. A.; Wells, J. M.; Reid, G. E.; McLuckey, S. A. Gaseous Apomyoglobin Ion Dissociation in a Quadrupole Ion Trap: (M + 2H)2+-(M + 21H)21+. Int. J. Mass Spectrom. 2001, 212, 359–376.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of ChemistryPurdue University, 1393 Brown laboratoryWest LafayetteUSA

Personalised recommendations