Skip to main content
Log in

Mass spectra of copolymers which display compositional drifts or sequence constraints

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The spectral features appearing in mass spectra of random and block copolymers which display a drift in composition are discussed along with features appearing in mass spectra of terpolymers and tetrapolymers with sequence constraints. It is shown that previous models cannot account for these features. A new model is presented and a compact equation is derived which yields MS intensities. The prediction of the model is compared with some literature data, namely mass spectrometric data concerning a block copolymer sample containing units of α-methyl styrene and of methylmethacrylate which display a strong drift in composition, the molar fraction of methylmethacrylate units changing from 0. 99 to 0. 80 when passing from short to long macromolecular chains. The agreement between theory and experiment is good. A hyperbranched polymer obtained by condensing 4,4′-bis[p(acetoxy)phenyl] valeric acid (referred to as diphenolic acid, DPA) was then considered. The polymer turned out to be a copolymer with regular DPA units and modified DPA units (possessing a phenol group). The molar fraction of regular DPA units changes from 0. 80 to 0. 95 when passing from low masses to high masses.

Copolymers with sequence constraints are considered, such as ABC copolymers in which AA cannot be found along the chain or ABCD copolymers in which A cannot follow A, B cannot follow B, etc. The novel method is applied to an exactly alternating copolymer with units of styrene (St) and maleic anhydride (MAH). The St-MAH sample turned out to be a complex mixture and the presence of a small amount of units of maleic acid (MAC) is detected. The abundance of MAC, estimated by the chain statistical method, is 5%. The method is applied to the copolymer obtained by reactive blending of poly(butylene terephthalate) and poly(bisphenolA carbonate). In this case, the theoretical spectra are generated and spectral features are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuwaysir, L. M.; Wilkins, C. L.; Simonsick, W. J. Analysis of Copolymers by Laser Desorption Fourier-Transform Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1990, 1, 66–71.

    Article  CAS  Google Scholar 

  2. Wilding, I. R.; Melia, C. D.; Short, R. D.; Davies, M. C.; Brown, A. SSIMS Analysis of Methacrylate Copolymers Employed in Drug Delivery. J. Appl. Polym. Sci. 1990, 39, 1827–1835.

    Article  CAS  Google Scholar 

  3. Vincenti, M.; Sommazzi, A. Analytical Characterization of Ethylene-Propylene-Carbon Monoxide Copolymers by Desorption Chemical-Ionization Mass Spectrometry. Societ. Chim. Ital. Ann. Chim. Rome. 1993, 83, 209–222.

    CAS  Google Scholar 

  4. Hunt, S. M.; Sheil, M.; Derrick, P. J. Comparison of Electrospray Ionization Mass Spectrometry with Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Size Exclusion Chromatography for the Characterization of Polyester Resins. Eur. Mass Spectrom. 1998, 4, 475–486.

    Article  CAS  Google Scholar 

  5. Senshu, K.; Furuzono, T.; Koshizaki, N.; Yamashita, S.; Matsumoto, T.; Kishida, A.; Akashi, M. Novel Functional Polymers: Poly(dimethylsiloxane)-Polyamide Multiblock Copolymer 8. Surface Studies of Aramid-Silicone Resin by Means of XPS, Static SIMS, and TEM. Macromolecules 1997, 30, 4421–4428.

    Article  CAS  Google Scholar 

  6. Lub, J.; Buning, G. H. W. The Analysis of Various Polycarbonates by Static Secondary-Ion Mass Spectrometry. Polymer 1990, 31, 1009–1017.

    Article  CAS  Google Scholar 

  7. Yang, J. C.; Nonidez, W. K.; Mays, J. W. MALDI/TOF/MS as a Method for Characterizing Micelle-Forming Polymers: A MALDI/TOF/MS Study of Amphiphilic Diblock Copolymers Based on Sulfonated Polystyrene. Int. J. Polym. Anal. Chem. 2001, 6, 547–563.

    Article  CAS  Google Scholar 

  8. Van der Hage, E. R. E.; Duursma, M. C.; Heeren, R. M. A.; Boon, J. J.; Nielen, M. W. F.; Weber, A. J. M.; de Koster, C. G.; de Vries, N. K. Structural Analysis of Polyoxyalkyleneamines by Matrix-Assisted Laser Desorption/Ionization on an External Ion Source FT-ICR-MS and NMR. Macromolecules 1997, 30, 4302–4309.

    Article  Google Scholar 

  9. Ballistreri, A.; Impallomeni, G.; Montaudo, G.; Lenz, R. W.; Kim, Y. B.; Fuller, R. C. Sequence Distribution of β-Hydroxyalkanoate Units with Higher Alkyl-Groups in Bacterial Copolyesters. Macromolecules 1990, 23, 5059–5064.

    Article  CAS  Google Scholar 

  10. Montaudo, M. S.; Puglisi, C.; Samperi, F.; Montaudo, G. Structural Characterization of Multicomponent Copolyesters by Mass Spectrometry. Macromolecules 1998, 31, 8666–8676.

    Article  CAS  Google Scholar 

  11. Florjanczyk, Z.; Kozera-Szakowska, A.; Noniewicz, J. Terpolymerization of Sulfur Dioxide with Oxiranes and Cyclic Anhydrides. Macromol. Chem. Phys. 2002, 203, 565–572.

    Article  CAS  Google Scholar 

  12. Montaudo, M. S. Mass Spectra of Copolymers. Mass Spectrom. Rev. 2002, 21, 108–144.

    Article  CAS  Google Scholar 

  13. Montaudo, G.; Lattimer, R., Eds.; Mass Spectrometry of Polymers; CRC Press: Boca Raton, 2002.

    Google Scholar 

  14. Montaudo, M. S.; Montaudo, G. Further Studies on the Composition and Microstructure of Copolymers by Statistical Modeling of Their Mass-Spectra. Macromolecules 1992, 25, 4264–4280.

    Article  CAS  Google Scholar 

  15. Montaudo, M. S.; Ballistreri, A.; Montaudo, G. Determination of Microstructure in Copolymers—Statistical Modeling and Computer-Simulation of Mass Spectra. Macromolecules 1991, 24, 5051–5057.

    Article  CAS  Google Scholar 

  16. Guttman, C. M.; Blair, W. R.; Danis, P. O. Mass Spectroscopy and SEC of SRM 1487, a Low Molecular Weight Poly(methyl methacrylate) Standard. J. Polym. Sci. Part B. Polym. Phys. 1997, 35, 2409–2419.

    Article  CAS  Google Scholar 

  17. Hua, Q.; Tannahill, T.; Moore, J. A. Hyperbranched Polymers Based on Diphenolic Acid. Abstract Paper, POLY Part 2. Am. Chem. Soc. 2001, 222, 34–35.

    Google Scholar 

  18. Schmaljohann, D.; Komber, H.; Voit, B. I. Conversion Dependence of the Structural Units and the Degree of Branching of a Hyperbranched Polyester Based on 4,4-bis-(4′-hydroxyphenyl) Pentanoic Acid Determined by NMR Spectroscopy. Acta Polym. 1999, 1, 196–204.

    Article  Google Scholar 

  19. Dusek, K.; Somvarsky, J.; Smrckova, M.; Simonsick, W. J.; Wilczek, L. Role of Cyclization in the Degree-of-Polymerization Distribution of Hyperbranched Polymers—Modeling and Experiments. Polym. Bull. 1999, 42, 489–496.

    Article  CAS  Google Scholar 

  20. Gooden, J. K.; Gross, M. L.; Mueller, A.; Stefanescu, A. D.; Wooley, K. L. Cyclization in Hyperbranched Polymer Syntheses: Characterization by MALDI-TOF Mass Spectrometry. J. Am. Chem. Soc. 1998, 120, 10180–10186.

    Article  CAS  Google Scholar 

  21. Flory, P. Intramolecular Reaction Between Neighboring Substituents of Vinyl Polymers. J. Am. Chem. Soc. 1939, 61, 1518–1520.

    Article  CAS  Google Scholar 

  22. Braun, D.; Elsasser, H. Free Radical Terpolymerization of Three Non-Homopolymerizable Monomers, II. Terpolymerization of N-ethylmaleimide, Anethol, and Trans-Stilbene. Macromol. Chem. Phys. 2000, 201, 2103–2107.

    Article  CAS  Google Scholar 

  23. Braun, D.; Elsasser, H.; Hu, F. Free Radical Terpolymerization of Three Non-Homopolymerizable Monomers. Part III. Eur. Polym. J. 2001, 37, 1779–1784.

    Article  CAS  Google Scholar 

  24. Devaux, J.; Godard, P.; Mercier, J. P. Bisphenol-A Polycabonate-Poly(butylene terephthalate) Transesterifications, IV. Kinetics and Mechanism of the Exchange Reaction. J. Polym. Sci. Polym. Phys. Ed. 1982, 20, 1901–1909.

    Article  CAS  Google Scholar 

  25. Montaudo, G.; Puglisi, C.; Samperi, F. Mechanism of Exchange in PBT/PC and PET/PC Blends. Composition of the Copolymer Formed in the Melt Mixing Process. Macromolecules 1998, 31, 650–661.

    Article  CAS  Google Scholar 

  26. Fakorov, S. Transreactions in Condensation Polymers; VCH Publ: New York, 1998.

    Google Scholar 

  27. Karavia, V. K.; Koulouri, E. G.; Kallitsis, J. K. Characterization of Melt-Mixed Poly(ethylene-2,6-naphthalate) (PEN)/Polycarbonate (PC) Blends. J. Macromol. Sci. Pure Appl. Chem. 2002, 39, 527–539.

    Article  Google Scholar 

  28. Montaudo, M. S. Sequence Constraints in a Glycine-Lactic Acid Copolymer Determined by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 639–644.

    Article  CAS  Google Scholar 

  29. Randall, H. Polymer Sequence Determination (The 13C) Academic Press: New York, NY, 1977.

    Google Scholar 

  30. Hill, D. J. T.; O’Donnell, J. H.; Remphrey, L. Analysis of the Terpolymerization of Acrylonitrile, Styrene, and 2,4,6-Tribromophenyl Acrylate. J. Macromol. Sci. Pure Appl. Chem. 1992, A29, 813–820.

    CAS  Google Scholar 

  31. Roland, M. T.; Cheng, H. N. Reaction Probability Model for 4-Component Copolymerization. Macromolecules 1991, 24, 2015–2018.

    Article  CAS  Google Scholar 

  32. Lowry, G. G., Ed.; Markov Chains in Monte Carlo Calculations in Polymer Science; Dekker: New York, 1969, p 8.

    Google Scholar 

  33. Yamadera, R.; Murano, M. The Determination of Randomness in Copolyesters by High Resolution Nuclear Magnetic Resonance. Part A1. J. Polym. Sci. 1967, 5, 2259–2266.

    CAS  Google Scholar 

  34. Han, M. J. Kinetics of Polycondensation and Copolycondensation by Ester-Interchange Reactions. Macromolecules 1980, 13, 1009–1012.

    Article  CAS  Google Scholar 

  35. Han, M. J. Kinetics of Polycondensation and Copolycondensation by Amide-Interchange Reactions. Macromolecules 1982, 15, 438–441.

    Article  CAS  Google Scholar 

  36. Montaudo, G.; Montaudo, M. S.; Scamporrino, E.; Vitalini, D. Mechanism of Exchange in Polyesters. Composition and Microstructure of Copolymers Formed in the Melt-Mixing Process of Poly(ethylene terephthalate) and Poly(ethylene adipate). Macromolecules 1992, 25, 5099–5107.

    Article  CAS  Google Scholar 

  37. Matlengiewicz, M. Tetrad Distribution of an Aromatic Copolyterephthalate by lH NMR. Macromolecules 1984, 17, 473–478.

    Article  CAS  Google Scholar 

  38. Philipsen, H. J. A.; Wubbe, F. P. C.; Klumperman, B.; German, A. L. Microstructural Characterization of Aromatic Copolyesters Made by Step Reactions, by Gradient Polymer Elution Chromatography. J. Appl. Polym. Sci. 1999, 72, 183–201.

    Article  CAS  Google Scholar 

  39. Kuchanov, S. I. Principles of the Quantitative Description of the Chemical Structure of Synthetic Polymers. Adv. Polym. Sci. 2000, 152, 157–201.

    Article  CAS  Google Scholar 

  40. Storti, G.; Polotti, G.; Canu, P.; Morbidelli, M. Molecular-Weight Distribution in Emulsion Polymerization. II. The Copolymer Case. J. Polym. Sci. Polym. Chem. 1992, 30, 751–777.

    Article  CAS  Google Scholar 

  41. Cheng, H. N. NMR Characterization of Copolymers that Exhibit Nonsymmetric Compositional Heterogeneity. Macromolecules 1997, 30, 4117–4125.

    Article  CAS  Google Scholar 

  42. Schoonbrood, H. A. S.; vanEijnatten, R. C. P. M.; vandenReijen, B.; vanHerk, A. M.; German, A. L. Emulsion Co- and Terpolymerization of Styrene, Methyl Methacrylate, and Methyl Acrylate. I. Experimental Determination and Model Prediction of Composition Drift and Microstructure in Batch Reactions. J. Polym. Sci. Pol. Chem. 1996, 34, 935–955.

    Article  CAS  Google Scholar 

  43. Tobita, H. Bivariate Distribution of Chain Length and Composition in Multicomponent Polymerization. Polymer 1998, 39, 2367–2372.

    Article  CAS  Google Scholar 

  44. Cheng, H. N. NMR Sequence Analysis for Copolymers Made at High Conversions. Int. J. Polym. Anal. Chem. 1997, 4, 71–85.

    Article  CAS  Google Scholar 

  45. Montaudo, M. S.; Adamus, G.; Kowalczuk, M. Bivariate Distribution in Copolymers: A New Model. J. Polym. Sci. Polym. Chem. 2002, 40, 2442–2448.

    Article  CAS  Google Scholar 

  46. Servaty, S.; Köhler, W.; Meyer, W. H.; Rosenauer, C.; Spickermann, J.; Räder, H. J.; Wegner, G. MALDI-TOF-MS Copolymer Analysis: Characterization of a Poly(dimethylsiloxane)-co-Poly(hydromethyl siloxane) as a Precursor of a Functionalized Silicone Graft Copolymer. Macromolecules 1998, 31, 2468–2474.

    Article  CAS  Google Scholar 

  47. Matlengiewicz, M.; Nguyen, G.; Nicole, D.; Henzel, N. Analysis of β-CH2 Signals in the C-13 NMR Spectra of the Methyl Methacrylate-Ethyl Acrylate Copolymer as a Tool for Microstructure Determination. J. Polym. Sci. Pol. Chem. 2000, 38, 2147–2155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio S. Montaudo.

Additional information

Published online January 15, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montaudo, M.S. Mass spectra of copolymers which display compositional drifts or sequence constraints. J Am Soc Mass Spectrom 15, 374–384 (2004). https://doi.org/10.1016/j.jasms.2003.11.011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2003.11.011

Keywords

Navigation