Skip to main content
Log in

Quantitation of phosphopeptides using affinity chromatography and stable isotope labeling

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Reversible phosphorylation of proteins represents an important component of cellular signaling pathways. The isolation of phosphoproteins in complex mixtures and the determination of the level of phosphorylation have been and remain a major challenge. It has prompted the development of several strategies, including immobilized metal affinity capture to enrich for phosphorylated peptides. An improved methodology was published (Ficarro, et al., Nature Biotechnology 2002, 20, 301–305) that showed increased selectivity through esterification of amino acid side chain carboxylic groups of enzymatically digested peptides. This method was applied for relative quantitation of phosphopeptides in conjunction with the use of stable isotope labeling. The merits and limits of the approach are discussed and its application to the analysis of the effects of serum starvation on in vitro cultured human lung cells is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cobb, M. H.; Robbins, D. J.; Boulton, T. G. ERKs, Extracellular Signal-Regulated MAP-2 Kinases. Curr. Opin. Cell Biol. 1991, 3, 1025–1032.

    Article  CAS  Google Scholar 

  2. van der Geer, P.; Hunter, T. Phosphopeptide Mapping and Phosphoamino Acid Analysis by Electrophoresis and Chromatography on Thin-Layer Cellulose Plates. Electrophoresis 1994, 15, 544–554.

    Article  Google Scholar 

  3. Larsen, M. R.; Sorensen, G. L.; Fey, S. J.; Larsen, P. M.; Roepstorff, P. Phospho-Proteomics: Evaluation of the Use of Enzymatic Dephosphorylation and Differential Mass Spectrometric Peptide Mass Mapping for Site Specific Phosphorylation Assignment in Proteins Separated by Gel Electrophoresis. Proteomics 2001, 1, 223–238.

    Article  CAS  Google Scholar 

  4. Steen, H.; Kuster, B.; Fernandez, M.; Pandey, A.; Mann, M. Detection of Tyrosine Phosphorylated Peptides by Precursor Ion Scanning Quadrupole TOF Mass Spectrometry in Positive Ion Mode. Anal. Chem. 2001, 73, 1440–1448.

    Article  CAS  Google Scholar 

  5. DeGnore, J.; Qin, J. Fragmentation of Phosphopeptides in an Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1998, 9, 1175–1188.

    Article  CAS  Google Scholar 

  6. Carr, S. A.; Huddleston, M. J.; Annan, R. S. Selective Detection and Sequencing of Phosphopeptides at the Femtomole Level by Mass Spectrometry. Anal Biochem. 1996, 239, 180–192.

    Article  CAS  Google Scholar 

  7. Cramer, R.; Richter, W. J.; Stimson, E.; Burlingame, A. L. Analysis of Phospho- and Glycopolypeptides with Infrared Matrix-Assisted Laser Desorption and Ionization. Anal. Chem. 1998, 70, 4939–4944.

    Article  CAS  Google Scholar 

  8. Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.

    Article  CAS  Google Scholar 

  9. Kelleher, N. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Localization of Labile Posttranslational Modifications by Electron Capture Dissociation: The Case of γ-Carboxyglutamic Acid. Anal. Chem. 1999, 71, 4250–4253.

    Article  CAS  Google Scholar 

  10. Shi, S. D.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Phosphopeptide/Phosphoprotein Mapping by Electron Capture Dissociation Mass Spectrometry. Anal. Chem. 2001, 73, 19–22.

    Article  CAS  Google Scholar 

  11. Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun Mass Spectrom. 2000, 14, 1793–1800.

    Article  CAS  Google Scholar 

  12. Huddleston, M. J.; Bean, M. F.; Car, S. A. Collisional Fragmentation of Glycopeptides by Electrospray Ionization LC/MS and LC/MS/MS: Methods for Selective Detection of Gglycopeptides in Protein Digests. J. Am Soc. Mass Spectrum. 1993, 4, 877–884.

    Article  Google Scholar 

  13. Ding, J.; Burkhart, W.; Kassel, D. B. Identification of Phosphorylated Peptides from Complex Mixtures Using Negative-Ion Orifice-Potential Stepping and Capillary Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1994, 8, 94–98.

    Article  CAS  Google Scholar 

  14. Annan, R. S.; Carr, S. A. Phosphopeptide Analysis by Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry. Anal. Chem. 1996, 68, 3413–3421.

    Article  CAS  Google Scholar 

  15. Annan, R. S.; Huddleston, M. J.; Verma, R.; Deshaies, R. J.; Carr, S. A. A Multidimensional Electrospray MS-Based Approach to Phosphopeptide Mapping. Anal. Chem. 2001, 73, 393–404.

    Article  CAS  Google Scholar 

  16. Wilm, M.; Neubauer, G.; Mann, M. Parent Ion Scans of Unseparated Peptide Mixtures. Anal. Chem. 1996, 68, 527–533.

    Article  CAS  Google Scholar 

  17. Wind, M.; Edler, M.; Jakubowski, N.; Linscheid, M.; Wesch, H.; Lehmann, W. D. Analysis of Protein Phosphorylation by Capillary Liquid Chromatography Coupled to Element Mass Spectrometry with 31P Detection and to Electrospray Mass Spectrometry. Anal. Chem. 2001, 73, 29–35.

    Article  CAS  Google Scholar 

  18. Oda, Y.; Huang, K.; Cross, F. R.; Cowburn, D.; Chait, B. T. Accurate Quantitation of Protein Expression and Site-Specific Phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6591–6596.

    Article  CAS  Google Scholar 

  19. Adamczyk, M.; Gebler, J. C.; Wu, J. Selective Analysis of Phosphopeptides Within a Protein Mixture by Chemical Modification, Rreversible Biotinylation, and Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1481–1488.

    Article  CAS  Google Scholar 

  20. Weckwerth, W.; Wilmitzer, L.; Fiehn, O. Comparative Quantification and Identification of Phosphoproteins Using Stable Isotope Labeling and Liquid Chromatography/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 1677–1681.

    Article  CAS  Google Scholar 

  21. Goshe, M. B.; Conrads, T. P.; Panisko, E. A.; Angell, N. H.; Veenstra, T. D.; Smith, R. D. Phosphoprotein Isotope-Coded Affinity Tag Approach for Isolating and Quantitating Phosphopeptides in Proteome-Wide Analyses. Anal. Chem. 2001, 73, 2578–2586.

    Article  CAS  Google Scholar 

  22. Oda, Y.; Nagasu, T.; Chait, B. T. Enrichment Analysis of Phosphorylated Proteins as a Tool for Probing the Phosphoproteome. Nat. Biotechnol. 2001, 19, 379–382.

    Article  CAS  Google Scholar 

  23. Zhou, H.; Watts, J. D.; Aebersold, R. A Systematic Approach to the Analysis of Protein Phosphorylation. Nat. Biotechnol. 2001, 19, 375–378.

    Article  CAS  Google Scholar 

  24. Kaufmann, H.; Bailey, J. E.; Fussenegger, M. Use of Antibodies for Detection of Phosphorylated Proteins Separated by Two-Dimensional Gel Electrophoresis. Proteomics 2001, 1, 194–199.

    Article  CAS  Google Scholar 

  25. Kalo, M. S.; Pasquale, E. B. Multiple in Vivo Tyrosine Phosphorylation Sites in EphB Receptors. Biochemistry 1999, 38, 14396–14408.

    Article  CAS  Google Scholar 

  26. Andersson, L.; Porath, J. Isolation of Phosphoproteins by Immobilized Metal (Fe3+) Affinity Chromatography. Anal. Biochem. 1986, 154, 250–254.

    Article  CAS  Google Scholar 

  27. Nuwaysir, L. M.; Stults, J. T. Electrospray Ionization Mass Spectrometry of Phosphopeptides Isolated by On-Line Immobilization Metal-Ion Affinity Chromatography. J. Am. Soc. Mass Spectrom. 1993, 4, 662–669.

    Article  CAS  Google Scholar 

  28. Watts, J. D.; Affolter, M.; Krebs, D. L.; Wange, R. L.; Samelson, L. E.; Aebersold, R. Identification by Electrospray Ionization Mass Spectrometry of the Sites of Tyrosine Phosphorylation Induced in Activated Jurkat T Cells on the Protein Tyrosine Kinase ZAP-70. J. Biol. Chem. 1994, 269, 29520–29529.

    CAS  Google Scholar 

  29. Posewitz, M. C.; Tempst, P. Immobilized Gallium(III) Affinity Chromatography of Phosphopeptides. Anal. Chem. 1999, 71, 2883–2892.

    Article  CAS  Google Scholar 

  30. Figeys, D.; Corthalis, G. L.; Gallis, B.; Goodlett, D. R.; Ducret, A.; Corson, M. A.; Aebersold, R. Data-Dependent Modulation of Solid-Phase Extraction Capillary Electrophoresis for the Analysis of Complex Peptide and Phosphopeptide Mixtures by Tandem Mass Spectrometry Application to Endothelial Nitric Oxide Synthase. Anal. Chem. 1999, 71, 2279–2287.

    Article  CAS  Google Scholar 

  31. Stensballe, A.; Andersen, S.; Jensen, O. N. Characterization of Phosphoproteins from Electrophoretic Gels by Nanoscale Fe(III) Affinity Chromatography with Off-Line Mass Spectrometry Analysis. Proteomics 2001, 1, 207–222.

    Article  CAS  Google Scholar 

  32. Schlosser, A.; Bodem, J.; Bossemeyer, D.; Grummt, I.; Lehmann, W. D. Identification of Protein Phosphorylation Sites by Combination of Elastase Digestion, Immobilized Metal Affinity Chromatography, and Quadrupole-Time of Flight Tandem Mass Spectrometry. Proteomics 2002, 2, 911–918.

    Article  CAS  Google Scholar 

  33. Chen, S. L.; Huddleston, M. J.; Shou, W.; Deshaies, R. J.; Annan, R. S.; Carr, S. A. Mass Spectrometry-Based Methods for Phosphorylation Site Mapping of Hyperphosphorylated Proteins Applied to net1, a Regulator of Exit from Mitosis in Yeast. Mol. Cell. Proteom. 2002, 1, 186–196.

    Article  CAS  Google Scholar 

  34. Xhou, W.; Merrick, B. A.; Khaledi, M. G.; Tomer, K. B. Detection and Sequencing of Phosphopeptides Affinity Bound to Immobilized Metal Ion Beads by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 273–282.

    Article  Google Scholar 

  35. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M. Phosphoproteome Analysis by Mass Spectrometry and Its Application to Saccharomyces cerevisiae. Nat. Biotechnol. 2002, 20, 301–305.

    Article  CAS  Google Scholar 

  36. Creasy, D. M.; Cottrell, J. S. Error Tolerant Searching of Uninterpreted Tandem Mass Spectrometry Data. Proteomics 2002, 2, 1426–1434.

    Article  CAS  Google Scholar 

  37. Bafna, V.; Edwards, N. SCOPE: A Probabilistic Model for Scoring Tandem Mass Spectra Against a Peptide Database. Bioinformatics 2001, 17, S13-S21.

    Article  Google Scholar 

  38. Ficarro, S.; Chertihin, O.; Westbrook, V. A.; White, F.; Jayes, F.; Kalab, P.; Marto, J. A.; Shabanowitz, J.; Herr, J. C.; Hunt, D. F.; Visconti, P. E. Phosphoproteome Analysis of Capacitated Human Sperm. J. Biol. Chem. 2003, 278, 11579–11589.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Domon.

Additional information

Published online January 15, 2004

This article is in honor of Ruedi Aebesold, recipient of the 2002 Biemann Award.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, T., Alving, K., Feild, B. et al. Quantitation of phosphopeptides using affinity chromatography and stable isotope labeling. J Am Soc Mass Spectrom 15, 363–373 (2004). https://doi.org/10.1016/j.jasms.2003.11.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jasms.2003.11.004

Keywords

Navigation