Towards understanding the tandem mass spectra of protonated oligopeptides. 1: Mechanism of amide bond cleavage

Articles

Abstract

The mechanism of the cleavage of protonated amide bonds of oligopeptides is discussed in detail exploring the major energetic, kinetic, and entropy factors that determine the accessibility of the bx-yz (Paizs, B.; Suhai, S. Rapid Commun. Mass Spectrom.2002,16, 375) and “diketopiperazine” (Cordero, M. M.; Houser, J. J.; Wesdemiotis, C. Anal. Chem.1993,65, 1594) pathways. General considerations indicate that under low-energy collision conditions the majority of the sequence ions of protonated oligopeptides are formed on the bx-yz pathways which are energetically, kinetically, and entropically accessible. This is due to the facts that (1) the corresponding reactive configurations (amide N protonated species) can easily be formed during ion excitation, (2) most of the protonated nitrogens are stabilized by nearby amide oxygens making the spatial arrangement of the two amide bonds (the protonated and its N-terminal neighbor) involved in oxazolone formation entropically favored. On the other hand, formation of y ions on the diketopiperazine pathways is either kinetically or energetically or entropically controlled. The energetic control is due to the significant ring strain of small cyclic peptides that are co-formed with y ions (truncated protonated peptides) similar in size to the original peptide. The entropy control precludes formation of y ions much smaller than the original peptide since the attacking N-terminal amino group can rarely get close to the protonated amide bond buried by amide oxygens. Modeling the bx-yz pathways of protonated pentaalanine leads for the first time to semi-quantitative understanding of the tandem mass spectra of a protonated oligopeptide. Both the amide nitrogen protonated structures (reactive configurations for the amide bond cleavage) and the corresponding bx-yz transition structures are energetically more favored if protonation occurs closer to the C-terminus, e.g., considering these points the Ala(4)-Ala(5) amide bond is more favored than Ala(3)-Ala(4), and Ala(3)-Ala(4) is more favored than Ala(2)-Ala(3). This fact explains the increasing ion abundances observed for the b2/y3, b3/y2, and b4/y1 ion pairs in the metastable ion and low-energy collision induced mass spectra (Yalcin, T.; Csizmadia, I. G.; Peterson, M. B.; Harrison, A. G. J. Am. Soc. Mass Spectrom.1996,7, 233) of protonated pentaalanine. A linear free-energy relationship is used to approximate the ratio of the bx and yz ions on the particular bx-yz pathways. Applying the necessary proton affinities such considerations satisfactorily explain for example dominance of the b4 ion over y1 and the similar b3 and y2 ion intensities observed for the metastable ion and low-energy collision induced mass spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science 1989, 246, 64.CrossRefGoogle Scholar
  2. 2.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Da. Anal. Chem. 1988, 60, 2299.CrossRefGoogle Scholar
  3. 3.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  4. 4.
    Biemann, K. Contributions of Mass Spectrometrey to Peptide and Protein Structure. Biomed. Env. Mass Spectrom. 1988, 16, 99.CrossRefGoogle Scholar
  5. 5.
    Mann, M.; Wilm, M. Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags. Anal. Chem. 1994, 66, 4390.CrossRefGoogle Scholar
  6. 6.
    Eng, J. K.; McCormack, A. L.; Yates, J. R. III. An Approach to Correlate Tandem Mass Spectra Data of Peptides with Amino Acid Sequences in a Protein Database. J. Am. Soc. Mass Spectrom. 1994, 5, 976.CrossRefGoogle Scholar
  7. 7.
    Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S. Probability-Based Protein Identification by Searcheing Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567.CrossRefGoogle Scholar
  8. 8.
    Clauser, K. R.; Baker, P. R.; Burlingame, A. L. Role of Accurate Mass Measurement (+/− 10 ppm) in Protein Identification Strategies Employing MS or MS MS and Database Searching. Anal. Chem. 1999, 71, 2871.CrossRefGoogle Scholar
  9. 9.
    Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics; Oxford University Press: Oxford, 1996.Google Scholar
  10. 10.
    Frisch,, M. J. Gaussian-98, Rev. A9. Gaussian, Inc.: Pittsburgh PA, 1995.Google Scholar
  11. 11.
    Dongré, A. R.; Jones, J. L.; Somogyi, Á.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365.CrossRefGoogle Scholar
  12. 12.
    Harrison, A. G.; Yalcin, T. Proton Mobility in Protonated Amino Acids and Peptides. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 339.CrossRefGoogle Scholar
  13. 13.
    Csonka, I. P.; Paizs, B.; Lendvay, G.; Suhai, S. Proton Mobility in Protonated Peptides: A Joint Molecular Orbital and RRKM Study. Rapid. Commun. Mass Spectrom. 2000, 14, 417.CrossRefGoogle Scholar
  14. 14.
    Paizs, B.; Csonka, I. P.; Lendvay, G.; Suhai, S. Proton Mobility in Protonated Glycylglycine and N-Formylglycylglycinamide: A Combined Quantum Chemical and RKKM Study. Rapid Commun. Mass Spectrom. 2001, 15, 637.CrossRefGoogle Scholar
  15. 15.
    Paizs, B.; Suhai, S. Theoretical Study of the Main Fragmentation Pathways for Protonated Glycylglycine. Rapid Commun. Mass Spectrom. 2001, 15, 651.CrossRefGoogle Scholar
  16. 16.
    Paizs, B.; Suhai, S. Combined Quantum Chemical and RRKM Modeling of the Main Fragmentation Pathways of Protonated GGG. I. Cis-trans Isomerization Around Protonated Amide Bonds. Rapid Commun. Mass Spectrom. 2001, 15, 2307.CrossRefGoogle Scholar
  17. 17.
    Paizs, B.; Suhai, S. Combined Quantum Chemical and RRKM Modeling of the Main Fragmentation Pathways of Protonated GGG. II. Formation of b2, y1, and y2 Ions. Rapid Commun. Mass Spectrom. 2002, 16, 375.CrossRefGoogle Scholar
  18. 18.
    Cordero, M. M.; Houser, J. J.; Wesdemiotis, C. The Neutral Products Formed During Backbone Fragmentations of Protonated Peptides in Tandem Mass Spectrometry. Anal. Chem. 1993, 65, 1594.CrossRefGoogle Scholar
  19. 19.
    Yalcin, T.; Khouw, C.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. Why are b Ions Stable Species in Peptide Spectra?. J. Am. Soc. Mass Spectrom. 1995, 6, 1165.CrossRefGoogle Scholar
  20. 20.
    Yalcin, T.; Csizmadia, I. G.; Peterson, M. B.; Harrison, A. G. The Structure and Fragmentation of Bn (n ≧ 3) Ions in Peptide Spectra. J. Am. Soc. Mass Spectrom. 1996, 7, 233.CrossRefGoogle Scholar
  21. 21.
    Nold, M. J.; Wesdemiotis, C.; Yalcin, T.; Harrison, A. G. Amide Bond Dissociation in Protonated Peptides. Structures of the N-terminal Ionic and Neutral Fragments. Int. J. Mass Spectrom. Ion Processes 1997, 164, 137.CrossRefGoogle Scholar
  22. 22.
    Polce, M. J.; Ren, D.; Wesdemiotis, C. Dissociation of the Peptide Bond in Protonated Peptides. J. Mass Spectrom. 2000, 35, 1391.CrossRefGoogle Scholar
  23. 23.
    Paizs, B.; Lendvay, G.; Vékey, K.; Suhai, S. Formation of b2/+ Ions from Protonated Peptides: An ab Initio Study. Rapid Commun. Mass Spectrom. 1999, 13, 525.CrossRefGoogle Scholar
  24. 24.
    Paizs, B.; Suhai, S. Towards Understanding Some Ion Intensity Relationships for the Tandem Mass Spectra of Protonated Peptides. Rapid Commun. Mass Spectrom. 2002, 16, 1699.CrossRefGoogle Scholar
  25. 25.
    Harrison, A. G. Linear Free Energy Correlations in Mass Spectrometry. J. Mass Spectrom. 1999, 34, 577.CrossRefGoogle Scholar
  26. 26.
    Csonka, I. P.; Paizs, B.; Lendvay, G.; Suhai, S. Proton Mobility and Main Fragmentation Pathways of Protonated Lysylglycine. Rapid. Commun. Mass Spectrom. 2001, 15, 1457.CrossRefGoogle Scholar
  27. 27.
    Jegorov, A.; Paizs, B.; Zabka, M.; Kuzma, M.; Giannakopulos, A. E.; Derrick, P. J.; Havlicek, V. Profiling of Cyclic Hexadepsipeptides Roseotoxins Synthesized in Vitro and in Vivo: A Combined Tandem Mass Spectrometry and Quantum Chemical Study. Eur. J. Mass Spectrom. 2003, 9, 105.CrossRefGoogle Scholar
  28. 28.
    Paizs, B., Suhai, S., Harrison, A. G. Experimental and Theoretical Investigation of the Main Fragmentation Pathways of Protonated H-Gly-Gly-Sar-OH and H-Gly-Sar-Sar-OH, in press.Google Scholar
  29. 29.
    Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1995, 117, 12840.CrossRefGoogle Scholar
  30. 30.
    Paizs, B.; Lendvay, G.; Suhai, S. Towards Understanding the Mechanism of Gas Phase Hydrogen/Deuterium (H/D) Exchange Reactions of Protonated Peptides I. Reactions of Protonated Clycylglycine with D2O, unpublishedGoogle Scholar
  31. 31.
    Wyttenbach, T.; Paizs, B.; Barran, P.; Breci, L.; Liu, D.; Suhai, S.; Wysocki, V. H.; Bowers, M. T. The Effect of the Initial Water of Hydration on the Energetics, Structures and H/D-Exchange Mechanism of a Family of Pentapeptides: An Experimental and Theoretical Study, in press.Google Scholar
  32. 32.
    Harrison, A. G. The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom. Rev. 1997, 116, 201.CrossRefGoogle Scholar
  33. 33.
    Cassady, C. J.; Carr, S. R.; Zhang, K.; Chung-Phillips, A. Experimental and ab Initio Studies on Protonations of Alanine and Small Peptides of Alanine and Glycine. J. Org. Chem. 1995, 60, 1704.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of Molecular BiophysicsGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations