Skip to main content
Log in

Bile-pancreatic juice exclusion promotes Akt/NF-kB activation and chemokine production in ligation-induced acute pancreatitis

  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Using a unique surgical model (the donor rat model), we showed previously that duodenal replacement of bile-pancreatic juice, obtained fresh from a donor rat, ameliorates ligation-induced acute pancreatitis. We hypothesize that bile-pancreatic juice exclusion from gut exacerbates Akt/nuclear factor-kB (NF-kB) pathway activation and induces chemokine production in ligation-induced acute pancreatitis. We compared rats with bile-pancreatic duct ligation to those with duodenal bile-pancreatic juice replacement fresh from a donor rat beginning immediately before duct ligation. Sham control rats had ducts dissected but not ligated. Rats were killed 1 or 3 hours after operation (n=7/group). Akt activation (immunoblotting, immune-complex kinase assay, and ELISA), inhibitory protein I-kB (I-kB) activation (immunoblotting), and production of chemokines MCP-1 and RANTES (ELISA) were measured in pancreatic homogenates. NF-kB was quantitated in nuclear fractions using electrophoretic mobility shift assay. Duct ligation produced significant increases in pancreatic Akt, IkB, and NF-kB activation and production of MCP-1 and RANTES. Activation of the Akt/NF-kB pathway and increased MCP-1 and RANTES production in response to duct ligation were significantly reduced by bile-pancreatic juice replacement (ANOVA, P<0.05). Bile-pancreatic juice exclusion stimulates Akt/NF-kB pathway activation and increases chemokine production in ligation-induced acute pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samuel I, Toriumi Y, Wilcockson DP, Turkelson CM, Solomon TE, Joehl RJ. Bile and pancreatic juice replacement ameliorates early ligation-induced acute pancreatitis in rats. Am J Surg 1995;169:391–399.

    Article  PubMed  CAS  Google Scholar 

  2. Samuel I, Toriumi Y, Zaheer A, Joehl RJ. Mechanism of acute pancreatitis exacerbation by enteral bile-pancreatic juice exclusion. Pancreatology 2004;4:527–532.

    Article  PubMed  Google Scholar 

  3. Samuel I, Zaheer S, Zaheer A. Bile-pancreatic juice exclusion increases p38MAPK activation and TNF-alpha production in ligation-induced acute pancreatitis in rats. Pancreatology 2005;5:20–26.

    Article  PubMed  CAS  Google Scholar 

  4. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 2000;287(5455):1049–1053.

    Article  PubMed  CAS  Google Scholar 

  5. Strassheim D, Asehnoune K, Park JS, Kim JY, He Q, Richter D, Kuhn K, Mitra S, Abraham E. Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol 2004;172:5727–5733.

    PubMed  CAS  Google Scholar 

  6. Tas SW, Remans PH, Reedquist KA, Tak PP. Signal transduction pathways and transcription factors as therapeutic targets in inflammatory disease: Towards innovative antirheumatic therapy. Curr Pharm Des 2005;11:581–611.

    Article  PubMed  CAS  Google Scholar 

  7. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002;109(Suppl):S81-S96.

    Article  PubMed  CAS  Google Scholar 

  8. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005;9:59–71.

    Article  PubMed  CAS  Google Scholar 

  9. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401(6748):82–85.

    Article  PubMed  CAS  Google Scholar 

  10. Samuel I, Joehl RJ. Bile-pancreatic juice replacement, not cholinergic and cholecystokinin-receptor blockade, reverses acinar cell hyperstimulation after bile-pancreatic duct ligation. Am J Surg 1996;171:207–211.

    Article  PubMed  CAS  Google Scholar 

  11. Kaplan R, Zaheer A, Jaye M, Lim R. Molecular cloning and expression of biologically active human glia maturation factor-beta. J Neurochem 1991;57:483–490.

    Article  PubMed  CAS  Google Scholar 

  12. Zaheer A, Lim R. In vitro inhibition of MAP kinase (ERK1/ERK2) activity by phosphorylated glia maturation factor (GMF). Biochemistry 1996;35:6283–6288.

    Article  PubMed  CAS  Google Scholar 

  13. Zaheer A, Yorek MA, Lim R. Effects of glia maturation factor overexpression in primary astrocytes on MAP kinase activation, transcription factor activation, and neurotrophin secretion. Neurochem Res 2001;26:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  14. Samuel I, Zaheer S, Nelson JJ, Yorek MA, Zaheer A. CCK-A receptor induction and P38 and NF-kappaB activation in acute pancreatitis. Pancreatology 2004;4:49–56.

    Article  PubMed  CAS  Google Scholar 

  15. Bhatia M, Ramnath RD, Chevali L, Guglielmotti A. Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2005;288:G1259-G1265.

    Article  PubMed  CAS  Google Scholar 

  16. Bhatia M. Inflammatory response on the pancreatic acinar cell injury. Scand J Surg 2005;94:97–102.

    PubMed  CAS  Google Scholar 

  17. Osman MO, Gesser B, Mortensen JT, Matsushima K, Jensen SL, Larsen CG. Profiles of pro-inflammatory cytokines in the serum of rabbits after experimentally induced acute pancreatitis. Cytokine 2002;17:53–59.

    Article  PubMed  CAS  Google Scholar 

  18. Rau B, Baumgart K, Kruger CM, Schilling M, Beger HG. CC-chemokine activation in acute pancreatitis: Enhanced release of monocyte chemoattractant protein-1 in patients with local and systemic complications. Intensive Care Med 2003;29:622–629.

    PubMed  Google Scholar 

  19. Dib M, Zhao X, Wang X, Andersson E, Drewsen G, Andersson R. Acute phase response in acute pancreatitis: A comparison with abdominal sepsis. Scand J Gastroenterol 2003;38:1072–1077.

    Article  PubMed  CAS  Google Scholar 

  20. Saluja AK, Steer MLP. Pathophysiology of pancreatitis. Role of cytokines and other mediators of inflammation. Digestion 1999;60(Suppl 1):27–33.

    Article  PubMed  CAS  Google Scholar 

  21. Ranson J, Rifkind K, Roses DF, Fink S, Eng K, Spencer F. Prognostic signs and the role of operative management in acute pancreatitis. Surgery 1974;139(Gynecol Obstetr):69–81.

    CAS  Google Scholar 

  22. Ranson J. Etiological and prognostic factors in human acute pancreatitis: A review. Am J Gastroenterol 1982;77:633–638.

    PubMed  CAS  Google Scholar 

  23. Ohshio G, Saluja A, Steer ML. Effects of short-term pancreatic duct obstruction in rats. Gastroenterology 1991;104:1768–1779.

    Google Scholar 

  24. Samuel I, Toriumi Y, Yokoo H, Wilcockson DP, Trout JJ, Joehl RJ. Ligation-induced acute pancreatitis in rats and opossums: A comparative morphologic study of the early phase. J Surg Res 1994;57:1–13.

    Article  Google Scholar 

  25. Steer ML. Workshop on experimental pancreatitis. Dig Dis Sci 1985;30:575–581.

    Article  PubMed  CAS  Google Scholar 

  26. Williams JA. Intracellular signaling mechanisms activated by cholecystokinin- regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 2001;63:77–97.

    Article  PubMed  CAS  Google Scholar 

  27. Venter JC. The structure and evolution of adrenergic and muscarinic cholinergic receptors. J Cardiovasc Pharmacol 1987;10(Suppl 12):S69-S73.

    Article  PubMed  CAS  Google Scholar 

  28. Filippa N, Sable CL, Filloux C, Hemmings B, Van OE. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 1999;19:4989–5000.

    PubMed  CAS  Google Scholar 

  29. Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y, Kikkawa U. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett 1997;410(2–3):493–498.

    Article  PubMed  CAS  Google Scholar 

  30. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 2001;276:18934–18940.

    Article  PubMed  CAS  Google Scholar 

  31. Chen X, Ji B, Han B, Ernst SA, Simeone D, Logsdon CD. NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 2002;122:448–457.

    Article  PubMed  CAS  Google Scholar 

  32. Singh VP, Saluja AK, Bhagat L, van Acker GJ, Song AM, Soltoff SP, Cantley LC, Steer ML. Phosphatidylinositol 3-kinase-dependent activation of trypsinogen modulates the severity of acute pancreatitis. J Clin Invest 2001;108:1387–1395.

    Article  PubMed  CAS  Google Scholar 

  33. Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG, Denton RM. Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J Biol Chem 1997;272:7713–7719.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Samuel M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuel, I., Yorek, M.A., Zaheer, A. et al. Bile-pancreatic juice exclusion promotes Akt/NF-kB activation and chemokine production in ligation-induced acute pancreatitis. J Gastrointest Surg 10, 950–959 (2006). https://doi.org/10.1016/j.gassur.2006.04.007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.gassur.2006.04.007

Key words

Navigation