Skip to main content
Log in

Herpes simplex virus amplicon delivery of a hypoxia-inducible angiogenic inhibitor blocks capillary formation in hepatocellular carcinoma

  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Tumor hypoxia induces vascular endothelial growth factor (VEGF) expression, which stimulates tumor angiogenesis. The VEGF pathway is inhibited by soluble VEGF receptors (soluble fetal liver kinase-1 [sFlk-1]) that bind VEGF and block its interaction with endothelial cells. Herpes simplex virus (HSV)-derived amplicons are replication-incompetent viruses used for gene delivery. We attempt to attenuate angiogenesis and inhibit hepatoma growth through amplicon-mediated expression of sFlk-1 under hypoxic control. A multimerized hypoxia-responsive enhancer (10xHRE) was cloned upstream of the sFlk-1 gene (10xHRE/sFlk-1). An amplicon expressing 10xHRE/sFlk-1 was genetically engineered (HSV10xHRE/sFlk-1). SK-HEP-1 human hepatoma cells were transduced with HSV10xHRE/sFlk-1 and incubated in normoxia (21% O2) or hypoxia (1% O2). Human umbilical vein endothelial cell assay evaluated capillary inhibition. Western blot assessed sFlk-1 expression. SK-HEP-1 flank tumors (n = 24) in athymic mice were treated with HSV10xHRE/sFlk-1. Media from hypoxic SK-HEP-1 transduced with HSV10xHRE/sFlk-1 yielded an 80% reduction in capillary formation (P < 0.005), whereas normoxic SK-HEP-1 yielded a 25% reduction (P < 0.05). Western blot of SK-HEP-1 transduced with HSV10xHRE/sFlk-1 demonstrated greater sFlk-1 expression in hypoxia vs. normoxia. SK-HEP-1 tumors treated with HSV10xHRE/sFlk-1 yielded a 72% reduction in volume vs. the control group (P < 0.000001). HSV amplicon-mediated delivery of a hypoxia-inducible soluble VEGF receptor substantially reduces new vessel formation and tumor growth in hepatoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shibata T, Giaccia AJ, Brown JM. Development of a hypoxiaresponsive vector for tumor-specific gene therapy. Gene Ther 2000;7:493–498.

    Article  PubMed  CAS  Google Scholar 

  2. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–4515.

    PubMed  CAS  Google Scholar 

  3. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941–943.

    PubMed  CAS  Google Scholar 

  4. Tannock I, Guttman P. Response of Chinese hamster ovary cells to anticancer drugs under aerobic and hypoxic conditions. Br J Cancer 1981;43:245–248.

    PubMed  CAS  Google Scholar 

  5. Bush RS, Jenkin RD, Allt WE, Beale FA, Bean H, Dembo AJ, Pringle JF. Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer 1978;37(suppl):302–306.

    Google Scholar 

  6. Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 1998;28:68–77.

    Article  PubMed  CAS  Google Scholar 

  7. Li X, Feng GS, Zheng CS, Zhuo CK, Liu X. Influence of transarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma: An experimental study. World J Gastroenterol 2003;9:2445–2449.

    PubMed  CAS  Google Scholar 

  8. Cao G, Kuriyama S, Tsujinoue H, Chen Q, Mitoro A, Qi Z. A novel approach for inducing enhanced and selective transgene expression in hepatocellular-carcinoma cells. Int J Cancer 2000;87:247–252.

    Article  PubMed  CAS  Google Scholar 

  9. Duffy JP, Eibl G, Reber HA, Hines OJ. Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. Mol Cancer 2003;2:12.

    Article  PubMed  Google Scholar 

  10. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92:5510–5514.

    Article  PubMed  CAS  Google Scholar 

  11. Buchler P, Reber HA, Buchler M, Shrinkante S, BuchlerMW, Friess H, Semenza GL, Hines OJ. Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas 2003;26:56–64.

    Article  PubMed  CAS  Google Scholar 

  12. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–676.

    Article  PubMed  CAS  Google Scholar 

  13. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: Induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 1997;94:8761–8766.

    Article  PubMed  CAS  Google Scholar 

  14. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990;5:519–524.

    PubMed  CAS  Google Scholar 

  15. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 1991;6:1677–1683.

    PubMed  CAS  Google Scholar 

  16. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993;72:835–846.

    Article  PubMed  CAS  Google Scholar 

  17. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998;273:13313–13316.

    Article  PubMed  CAS  Google Scholar 

  18. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994;367:576–579.

    Article  PubMed  CAS  Google Scholar 

  19. Ogawa T, Takayama K, Takakura N, Kitano S, Ueno H. Antitumor angiogenesis therapy using soluble receptors: Enhanced inhibition of tumor growth when soluble fibroblast growth factor receptor-1 is used with soluble vascular endothelial growth factor receptor. Cancer Gene Ther 2002;9:633–640.

    Article  PubMed  CAS  Google Scholar 

  20. Fraefel C, Jacoby DR, Lage C, Hilderbrand H, Chou JY, Alt FW, Breakefield XO, Majzoub JA. Gene transfer into hepatocytes mediated by helper virus-free HSV/AAV hybrid vectors. Mol Med 1997;3:813–825.

    PubMed  CAS  Google Scholar 

  21. Tung C, Federoff HJ, Brownlee M, Karpoff H, Weigel T, Brennan MF, Fong Y. Rapid production of interleukin-2-secreting tumor cells by herpes simplex virus-mediated gene transfer: Implications for autologous vaccine production. Hum Gene Ther 1996;7:2217–2224.

    Article  PubMed  CAS  Google Scholar 

  22. Jarnagin WR, Delman K, Kooby D, Mastorides S, Zager J, Brennan MF, Blumgart LH, Federoff H, Fong Y. Neoadjuvant interleukin-12 immunogene therapy protects against cancer recurrence after liver resection in an animal model. Ann Surg 2000;231:762–771.

    Article  PubMed  CAS  Google Scholar 

  23. Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO. HSV-1 amplicon vectors-simplicity and versatility. Mol Ther 2000; 2:9–15.

    Article  PubMed  CAS  Google Scholar 

  24. Post DE, Van Meir EG. Generation of bidirectional hypoxia/ HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther 2001;8:1801–1807.

    Article  PubMed  CAS  Google Scholar 

  25. Bowers WJ, Howard DF, Brooks AI, Halterman MW, Federoff HJ. Expression of vhs and VP16 during HSV-1 helper virus-free amplicon packaging enhances titers. Gene Ther 2001;8:111–120.

    Article  PubMed  CAS  Google Scholar 

  26. Bowers WJ, Howard DF, Federoff HJ. Discordance between expression and genome transfer titering ofHSVamplicon vectors: Recommendation for standardized enumeration. Mol Ther 2000;1:294–299.

    Article  PubMed  CAS  Google Scholar 

  27. Imoto H, Osaki T, Taga S, Ohgami A, Ichiyoshi Y, Yasumoto K. Vascular endothelial growth factor expression in non-small-cell lung cancer: Prognostic significance in squamous cell carcinoma. J Thorac Cardiovasc Surg 1998;115:1007–1014.

    Article  PubMed  CAS  Google Scholar 

  28. Ishigami SI, Arii S, Furutani M, Niwano M, Harada T, Mizumoto M, Mori A, Onodera H, Imamura M. Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J Cancer 1998; 78:1379–1384.

    PubMed  CAS  Google Scholar 

  29. Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M, Matsubara I, Vinante O, Bonoldi E, Boracchi P, Gatti C, Suzuki H, Tominaga T. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 1997;89:139–147.

    Article  PubMed  CAS  Google Scholar 

  30. Toi M, Hoshina S, Takayanagi T, Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 1994;85:1045–1049.

    PubMed  CAS  Google Scholar 

  31. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–844.

    Article  PubMed  CAS  Google Scholar 

  32. Saleh M, Stacker SA, Wilks AF. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 1996;56:393–401.

    PubMed  CAS  Google Scholar 

  33. Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 1994;71:374–379.

    PubMed  CAS  Google Scholar 

  34. MaxwellPH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ. Hypoxiainducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997;94:8104–8109.

    Article  Google Scholar 

  35. Saftoiu A, Ciurea T, Banita M, Georgescu C, Comanescu V, Rogoveanu I, Gorunescu F, Georgescu I. Immunohistochemical assessment of angiogenesis in primary hepatocellular carcinoma. Rom J Gastroenterol 2004;13:3–8.

    PubMed  Google Scholar 

  36. Zhao ZC, Zheng SS, Wan YL, Jia CK, Xie HY. The molecular mechanism underlying angiogenesis in hepatocellular carcinoma: The imbalance activation of signaling pathways. Hepatobiliary Pancreat Dis Int 2003;2:529–536.

    PubMed  CAS  Google Scholar 

  37. Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 1995;270:6729–6733.

    Article  PubMed  CAS  Google Scholar 

  38. Jacobi J, Tam BY, Sundram U, Degenfeld GG, Blau HM, Kuo CJ, Cooke JP. Discordant effects of a soluble VEGF receptor on wound healing and angiogenesis. Gene Ther 2004;11:302–309.

    Article  PubMed  CAS  Google Scholar 

  39. Takayama K, Ueno H, Nakanishi Y, Sakamoto T, Inoue K, Shimizu K, Oohashi H, Hara N. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res 2000;60:2169–2177.

    PubMed  CAS  Google Scholar 

  40. Tseng JF, Farnebo FA, Kisker O, Becker CM, Kuo CJ, Folkman J, Mulligan RC. Adenovirus-mediated delivery of a soluble form of the VEGF receptor Flk1 delays the growth of murine and human pancreatic adenocarcinoma in mice. Surgery 2002;132:857–865.

    Article  PubMed  Google Scholar 

  41. Kou B, Li Y, Zhang L, Zhu G, Wang X, Li Y, Xia J, Shi Y. In vivo inhibition of tumor angiogenesis by a soluble VEGFR-2 fragment. Exp Mol Pathol 2004;76:129–137.

    Article  PubMed  CAS  Google Scholar 

  42. Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M, Breakefield XO, Fraefel C. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: Rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 1998;9:2787–2794.

    PubMed  CAS  Google Scholar 

  43. Stavropoulos TA, Strathdee CA. An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998;72:7137–7143.

    PubMed  CAS  Google Scholar 

  44. Wang Y, Yu L, Geller AI. Diverse stabilities of expression in the rat brain from different cellular promoters in a helper virus-free herpes simplex virus type 1 vector system. Hum Gene Ther 1999;10:1763–1771.

    Article  PubMed  CAS  Google Scholar 

  45. Costantini LC, Jacoby DR, Wang S, Fraefel C, Breakefield XO, Isacson O. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 1999;10:2481–2494.

    Article  PubMed  CAS  Google Scholar 

  46. Hockel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, Knapstein PG, Vaupel P. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 1993;26:45–50.

    Article  PubMed  CAS  Google Scholar 

  47. Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000; 48:919–922.

    Article  PubMed  CAS  Google Scholar 

  48. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1997; 38:285–289.

    Article  PubMed  CAS  Google Scholar 

  49. Dachs GU, Greco O, Tozer GM. Targeting cancer with gene therapy using hypoxia as a stimulus. Methods Mol Med 2004;90:371–388.

    PubMed  CAS  Google Scholar 

  50. Hockel M, Schlenger K, Knoop C, Vaupel P. Oxygenation of carcinomas of the uterine cervix: Evaluation by computerized O2 tension measurements. Cancer Res 1991;51:6098–6102.

    PubMed  CAS  Google Scholar 

  51. Licht P, Russu V, Lehmeyer S, Wissentheit T, Siebzehnrubl E, Wildt L. Cycle dependency of intrauterine vascular endothelial growth factor levels is correlated with decidualization and corpus luteum function. Fertil Steril 2003;80:1228–1233.

    Article  PubMed  Google Scholar 

  52. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280:C1358-C1366.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by grants RO1 CA 76416 and RO1 CA/DK80982 (Y.F.) from the National Institutes of Health, grant MBC-99366 (Y.F.) from the American Cancer Society, and grant BC024118 from the US Army and Rochester Nathan Shock Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pin, R.H., Reinblatt, M., Bowers, W.J. et al. Herpes simplex virus amplicon delivery of a hypoxia-inducible angiogenic inhibitor blocks capillary formation in hepatocellular carcinoma. J Gastrointest Surg 8, 812–823 (2004). https://doi.org/10.1016/j.gassur.2004.08.007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.gassur.2004.08.007

Key words

Navigation