Skip to main content
Log in

A new free radical scavenger, edaravone, ameliorates oxidative liver damage due to ischemia-reperfusion in vitro and in vivo

  • Published:
Journal of Gastrointestinal Surgery

Abstract

Ischemia-reperfusion injury causes oxidative stress producing reactive oxygen species, which is a serious problem linked to morbidity and mortality in liver surgery. We investigated the effects of edaravone, a new free radical scavenger, on liver oxidative stress in vitro and in vivo. We employed a hypoxiareoxygenation model of primary cultured hepatocytes using an AnaeroPack (Mitsubishi Gas Chemical Co., Tokyo, Japan). Hepatocytes were exposed to 3 or 4 hours of hypoxia and then returned to oxygenation. We analyzed the time course changes of aspartate aminotransferase (AST), phosphatidylcholine hydroperoxide (PCOOH), and adenosine triphosphate (ATP) content in hepatocytes of edaravone-treated groups or nontreated groups after reoxygenation. Edaravone significantly attenuated the elevation of the AST level of the medium and hepatocellular PCOOH and preserved the hepatocellular ATP level. In vivo, male Sprague-Dawley rats were subjected to 45 minutes of hepatic ischemia and 120 minutes of reperfusion. The rats were intravenously injected with vehicle or edaravone (3 mg/kg or 10 mg/kg) before reperfusion and 1 hour after reperfusion. Serum AST levels and hepatic PCOOH and energy charge were significantly improved in both edaravone groups compared with control. In conclusion, edaravone has the ability to eliminate intra-hepatocellular superoxide species and attenuate oxidative liver damage in liver surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huguet C, Nordlinger B, Bloch P, Conard J. Tolerance of the human liver to prolonged normothermic ischemia. A biological study of 20 patients submitted to extensive hepatectomy. Arch Surg 1978;113:1448–1451.

    PubMed  CAS  Google Scholar 

  2. Atalla SL, Toledo-Pereyra LH, MacKenzie GH, Cederna JP. Infiuence of oxygen-derived free radical scavengers on ischemic livers. Transplantation 1985;40:584–590.

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe K, Watanabe K, Hayase T. Radical scavenging mechanism of MCI-186. Jpn Pharmacol Ther 1997;25:s1699-s1707.

    Google Scholar 

  4. Watanabe T, Yuki S, Saito K, Sato S, Sugimoto J, Ohori Y. Pharmacological studies of MCI-186, a new drug for acute stroke. Jpn Pharmacol Ther 1997;25:s1691-s1698.

    Google Scholar 

  5. Abe K, Yuki S, Kogure K. Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 1988;19:480–485.

    PubMed  CAS  Google Scholar 

  6. Nishi H, Watanabe T, Sakurai H, Yuki S, Ishibashi A. Effect of MCI-186 on brain edema in rats. Stroke 1989;20:1236–1240.

    PubMed  CAS  Google Scholar 

  7. Watanabe T, Yuki S, Egawa M, Nishi H. Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. J Pharmacol Exp Ther 1994;268:1597–1604.

    PubMed  CAS  Google Scholar 

  8. Minhaz U, Tanaka M, Tsukamoto H, Watanabe K, Koide S, Shohtsu A, Nakazawa H. Effect of MCI-186 on postischemic reperfusion injury in isolated rat heart. Free Radic Res 1996;24:361–367.

    PubMed  CAS  Google Scholar 

  9. Wu TW, Zeng LH, Wu J, Fung KP. Myocardial protection of MCI-186 in rabbit ischemia-reperfusion. Life Sci 2002;71:2249–2255.

    Article  PubMed  CAS  Google Scholar 

  10. Mitsumori K, Sakuragi M, Kitami K, Koyanagi I, Murata J. The effect of MCI-186 on regional cerebral blood.ow in patients with acute cerebral infarction. Therap Res 1998;19:1333–1345.

    Google Scholar 

  11. Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. Faseb J 1990;4:3355–3359.

    PubMed  CAS  Google Scholar 

  12. Tamura M, Nakajima Y, Omura T, Ito K, Kimura J, Kusumoto K, Isai H, Uchino J, Nakane A, Minagawa T. Can anti-Mac-1 and anti-TNF monoclonal antibody protect the liver from warm ischemia-reperfusion injury in mice? Transplant Proc 1995;27:768–770.

    PubMed  CAS  Google Scholar 

  13. Nakano H, Kuzume M, Namatame K, Yamaguchi M, Kumada K. Efficacy of intraportal injection of anti-ICAM-1 monoclonal antibody against liver cell injury following warm ischemia in the rat. Am J Surg 1995;170:64–66.

    Article  PubMed  CAS  Google Scholar 

  14. Oshiro Y, Marubayashi S, Maeda T, Asahara T, Fukuda Y, Yamada K, Koyama S, Ito H, Miyasaka M, Dohi K. Contribution of neutrophils and effect of monoclonal antibodies to adhesion molecules on ischemia and reperfusion injury in rat livers. Transplant Proc 1995;27:743–744.

    PubMed  CAS  Google Scholar 

  15. Vollmar B, Glasz J, Menger MD, Messmer K. Leukocytes contribute to hepatic ischemia/reperfusion injury via intercellular adhesion molecule-1-mediated venular adherence. Surgery 1995;117:195–200.

    Article  PubMed  CAS  Google Scholar 

  16. Jaeschke H. Mechanisms of reperfusion injury after warm ischemia of the liver. J Hepatobiliary Pancreat Surg 1998;5:402–408.

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki M, Takeuchi H, Kakita T, Unno M, Katayose Y, Matsuno S. The involvement of the intracellular superoxide production system in hepatic ischemia-reperfusion injury. In vivo and in vitro experiments using transgenic mice manifesting excessive CuZn-SOD activity. Free Radic Biol Med 2000; 29:756–763.

    Article  PubMed  CAS  Google Scholar 

  18. Kakita T, Suzuki M, Takeuchi H, Unno M, Matsuno S. Significance of xanthine oxidase in the production of intracellular oxygen radicals in an in-vitro hypoxia-reoxygenation model. J Hepatobiliary Pancreat Surg 2002;9:249–255.

    Article  PubMed  Google Scholar 

  19. Ninomiya M, Shimada M, Harada N, Shiotani S, Hiroshige S, Soejima Y, Suehiro T, Sugimachi K. Beneficial effect of MCI-186 on hepatic warm ischemia-reperfusion in the rat. Transplantation 2002;74:1470–1472.

    Article  PubMed  CAS  Google Scholar 

  20. Okatani Y, Wakatsuki A, Enzan H, Miyahara Y. Edaravone protects against ischemia/reperfusion-induced oxidative damage to mitochondria in rat liver. Eur J Pharmacol 2003;465:163–170.

    Article  PubMed  CAS  Google Scholar 

  21. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol 1976;13:29–83.

    Article  PubMed  CAS  Google Scholar 

  22. Kamiya T, Kwon AH, Kanemaki T, Matsui Y, Uetsuji S, Okumura T, Kamiyama Y. A simplified model of hypoxic injury in primary cultured rat hepatocytes. In Vitro Cell Dev Biol Anim 1998;34:131–137.

    Article  PubMed  CAS  Google Scholar 

  23. Miyazawa T, Yasuda K, Fujimoto K. Chemiluminescencehigh performance liquid chromatography of phosphatidylcholine hydroperoxide. Anal Lett 1987;20:915–925.

    CAS  Google Scholar 

  24. Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 1968;7:4030–4034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiaki Unno M.D., Ph.D..

Additional information

This work was supported in part by research grants from the Ministry of Education, Science, and Culture of Japan and the Yamanouchi Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, T., Unno, M., Takeuchi, H. et al. A new free radical scavenger, edaravone, ameliorates oxidative liver damage due to ischemia-reperfusion in vitro and in vivo. J Gastrointest Surg 8, 604–615 (2004). https://doi.org/10.1016/j.gassur.2004.02.011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.gassur.2004.02.011

Key words

Navigation