Skip to main content
Log in

Study on behaviors of functionally graded shape memory alloy cylinder

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

For better controllability in actuations, it is desirable to create Functionally Graded Shape Memory Alloys (FG-SMAs) in the actuation direction. It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder. Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder. The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters. The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case, as well as a variational hysteresis loop for the transformation, providing a mechanism for easy actuation control. When the gradient disappears, the model can degenerate to the non-gradient case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Boyd, D.C. Lagoudas, A thermodynamic constitutive model for the shape memory alloy materials. Part I. The monolithic shape memory alloy, Int. J. Plast. 12 (1996) 805–842.

    Article  Google Scholar 

  2. C.L. Chu, C.Y. Chung, P.H. Lin, S.D. Wang, Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis, Mater. Sci. Eng. A 366 (1) (2004) 114–119.

    Article  Google Scholar 

  3. L.J. Garner, L.N. Wilson, D.C. Lagoudas, O.K. Rediniotis, Development of a shape memory alloy actuated biomimetic vehicle, Smart Mater. Struct. 9 (2000) 673–683.

    Article  Google Scholar 

  4. V.E. Gyunter, P. Sysoliatin, T. Temerkahamor, Superelastic Shape Memory Implants in Maxillofacial Surgery, Traumatology, Orthopedics, and Neurosurgery, Tomsk University Publishing House, Tomsk, 1995.

    Google Scholar 

  5. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous media, J. Eng. Mater. Technol. 99 (1977) 2–15.

    Article  Google Scholar 

  6. A. Ilyin, M. Dudin, I. Makarova, NiTi instruments for TMJ surgeries, in: Conf. Proc. Superelastic Shape Memory Implants in Medicine. 1995, Tomsk, 1995, pp. 61–62.

  7. D.C. Lagoudas, Z. Bo, M.A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composite, Mech. Compos. Mater. Struct. 3 (1996) 153–179.

    Article  Google Scholar 

  8. B.T. Lester, Y. Chenisky, D.C. Lagoudas, Transformation characteristics of shape memory alloy composites, Smart Mater. Struct. 20 (2011) 1–13.

    Article  Google Scholar 

  9. C. Liang, F. Davidson, L.M. Scjetky, F.K. Straub, Applications of torsional shape memory alloy actuators for active rotor blade control: opportunities and limitations, in: SPIE Proc. Mathematics and Controls in Smart Structures, 2717, 1996, pp. 91–100.

  10. B.F. Liu, G.S. Dui, S.Y. Yang, On the transformation behavior of functionally graded SMA composites subjected to thermal loading, Eur. J. Mech. A 40 (2013) 139–147.

    Article  MathSciNet  Google Scholar 

  11. B. Liu, C. Du, Effects of external pressure on phase transformation of shape memory alloy cylinder, Int. J. Mech. Sci. 88 (2014) 8–16.

    Article  Google Scholar 

  12. B.F. Liu, P.C. Ni, W. Zhang, On behaviors of the functionally graded shape memory alloy under thermo-mechanical coupling, Acta Mech. Solida Sin. 1 (29) (2016) 46–58.

    Article  Google Scholar 

  13. A.S. Mahmud, Y. Liu, T.H. Nam, Design of functionally graded NiTi by heat treatment, Phys. Scr. 129 (2007) 222–226.

    Article  Google Scholar 

  14. A.S. Mahmud, Y. Liu, T. Nam, Gradient anneal of functionally graded NiTi, Smart Mater. Struct. 17 (2008) 1–5.

    Article  Google Scholar 

  15. Q.L. Meng, Y.N. Liu, H. Yang, T.H. Nam, Laser annealing of functionally graded NiTi thin plate, Scr. Mater. 65 (2011) 1109–1112.

    Article  Google Scholar 

  16. R. Mirzaeifar, M. Shakeri, R. DesRoches, A. Yavari, A semi-analytic analysis of shape memory alloy thick-walled cylinders under internal pressure, Arch. Appl. Mech. 81 (2011) 1093–1116.

    Article  Google Scholar 

  17. E. Miyazaki, Y. Watanabe, Development of shape memory alloy fiber reinforced smart FGMs, Mater. Sci. Forum 423–425 (2003) 107–112.

    Article  Google Scholar 

  18. I. Müller, S. Seelecke, Thermodynamic aspects of shape memory alloys, Math. Comput. Model. 34 (12–13) (2001) 1307–1355.

    Article  MathSciNet  Google Scholar 

  19. M.A. Qidwai, D.C. Lagoudas, On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material, Int. J. Plast. 16 (2000) 1309–1343.

    Article  Google Scholar 

  20. S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-on, Y. Suzuki, A. Masuda, An overview of vibration and seismic application of NiTi shape memory alloy, Smart Mater. Struct. 11 (2012) 218–229.

    Article  Google Scholar 

  21. B.S. Shariat, Y.N. Liu, G. Rio, Modelling and experimental investigation of geometrically graded NiTi shape memory alloys, Smart Mater. Struct. 22 (2013) 025030.

    Article  Google Scholar 

  22. M. Tabesh, B.F. Liu, J. Boyd, D.C. Lagoudas, Analytical Solution for pseudoelastic response of a shape memory thick-walled cylinder under internal pressure, Smart Mater. Struct. 22 (2013) 094007.

    Article  Google Scholar 

  23. S.Y. Yang, G.S. Dui, B.Y. Ma, Temperature variation of a NiTi wire considering the effects of test machine grips, Acta Mech. 226 (8) (2015) 2573–2580.

    Article  MathSciNet  Google Scholar 

  24. Y.P. Zhang, X.P. Zhang, Z.Y. Zhong, Fabrication, transformation and superelasticity behavior of NiTi memory alloy with large pore-size and gradient porosity, Acta Metall. Sinica 43 (11) (2007) 1221–1227.

    Google Scholar 

  25. Y.P. Zhu, Y.L. Gu, H.G. Liu, A macroscopic constitutive model of temperature induced phase transition of polycrystalline Ni2MnGa by directional solidification, Mater. Sci. Eng. A 616 (2015) 474–479.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingfei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wang, Q., Zhou, R. et al. Study on behaviors of functionally graded shape memory alloy cylinder. Acta Mech. Solida Sin. 30, 608–617 (2017). https://doi.org/10.1016/j.camss.2017.11.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.11.004

Keywords

Navigation