Acta Mechanica Solida Sinica

, Volume 30, Issue 6, pp 573–582 | Cite as

Damage evolution and crack propagation in rocks with dual elliptic flaws in compression

  • Jun Xu
  • Zhaoxia Li


To give an insight into the understanding of damage evolution and crack propagation in rocks, a series of uniaxial and biaxial compression numerical tests are carried out. The investigations show that damage evolution occurs firstly in the weak rock, the area around the flaw and the area between the flaw and the neighboring rock layer. Cracks mostly generate as tensile cracks under uniaxial compression and shear cracks under biaxial compression. Crack patterns are classified and divided. The relationship between the accumulated lateral displacement and the short radius (b) is fitted, and the equation of crack path is also established.


Damage evolution Crack propagation Elliptic flaw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.F. Ashby, C.G. Sammis, The damage mechanics of brittle solids in compression, Pure Appl. Geophys. 133 (1990) 489–521.CrossRefGoogle Scholar
  2. 2.
    R. Weinberger, Joint nucleation in layered rocks with non-uniform distribution of cavities, J. Struct. Geol. 23 (2001) 1241–1254.CrossRefGoogle Scholar
  3. 3.
    B. Larsen, A. Gudmundsson, Linking of fractures in layered rocks: implications for permeability, Tectonophysics 492 (2010) 108–120.CrossRefGoogle Scholar
  4. 4.
    M.R. Gross, Y. Eyal, Throughgoing fractures in layered carbonate rocks, Geol. Soc. Am. Bull. 119 (2007) 1387–1404.CrossRefGoogle Scholar
  5. 5.
    E.Z. Lajtai, A theoretical and experimental evaluation of the Griffith theory of brittle fracture, Tectonophysics 11 (1971) 129–159.CrossRefGoogle Scholar
  6. 6.
    S. Nemat-Nasser, H. Horii, Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst, J. Geophys. Res. Atmos. 87 (1982) 6805–6821.CrossRefGoogle Scholar
  7. 7.
    R.H.C. Wong, K.T. Chau, Crack coalescence in a rock-like material containing two cracks, Int. J. Rock Mech. Min. Sci. 35 (1998) 147–164.CrossRefGoogle Scholar
  8. 8.
    A. Bobet, H.H. Einstein, Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci. 35 (1998) 863–888.CrossRefGoogle Scholar
  9. 9.
    L.N.Y. Wong, H.H. Einstein, Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation, Rock Mech. Rock Eng. 42 (2009) 475–511.CrossRefGoogle Scholar
  10. 10.
    S.Q. Yang, X.R. Liu, H.W. Jing, Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression, Int. J. Rock Mech. Min. Sci. 63 (2013) 82–92.Google Scholar
  11. 11.
    H.D. Tang, Z.D. Zhu, M.L. Zhu, H.X. Lin, Mechanical behavior of 3D crack growth in transparent rock-like material containing preexisting flaws under compression, Adv. Mater. Sci. Eng. 2015 (2015) 1–10.Google Scholar
  12. 12.
    S.Q. Yang, Y.H. Huang, W.L. Tian, J.B. Zhu, An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression, Eng. Geol. 217 (2017) 35–48.CrossRefGoogle Scholar
  13. 13.
    B. Larsen, A. Gudmundsson, Linking of fractures in layered rocks: implications for permeability, Tectonophysics 492 (2010) 108–120.CrossRefGoogle Scholar
  14. 14.
    L. Guo, J.P. Latham, J. Xiang, A numerical study of fracture spacing and through-going fracture formation in layered rocks, Int. J. Solids Struct. 110–111 (2017) 44–57.CrossRefGoogle Scholar
  15. 15.
    D.P. Xu, X.T. Feng, D.F. Chen, C.Q. Zhang, Q.X. Fan, Constitutive representation and damage degree index for the layered rock mass excavation response in underground openings, Tunnelling Underground Space Technol. 64 (2017) 133–145.CrossRefGoogle Scholar
  16. 16.
    X. Shi, X. Yang, Y. Meng, G. Li, An anisotropic strength model for layered rocks considering planes of weakness, Rock Mech. Rock Eng. 49 (2016) 3783–3792.CrossRefGoogle Scholar
  17. 17.
    X. Chang, Y. Shan, Z. Zhang, C. Tang, Z. Ru, Behavior of propagating fracture at bedding interface in layered rocks, Eng. Geol. 197 (2015) 33–41.CrossRefGoogle Scholar
  18. 18.
    D.J. Green, P.S. Nicholson, J.D. Embury, Crack shape studies in brittle porous materials, J. Mater. Sci. 12 (1977) 987–989.CrossRefGoogle Scholar
  19. 19.
    I.G. Abdul’manov, N.S. Krasílova, V.A. Maksimenko, V.P. Netrebko, N.P. Novikov, Influence of the shape of an inclusion on the stress distribution in rock, J. Min. Sci. 24 (1988) 43–46.Google Scholar
  20. 20.
    M.R. Du, H.W. Jing, H.J. Su, T.T. Zhu, Effects of hole’s geometrical shape on strength and failure characteristics of a sandstone sample containing a single hole, Eng. Mech. 33 (2016) 190–196 (in Chinese).Google Scholar
  21. 21.
    J. Jaeger, N.G. Cook, R.W. Zimmerman, R. Zimmerman, Fundamentals of Rock Mechanics, Blackwell, 2007.Google Scholar
  22. 22.
    S.Y. Li, T.M. He, X.C. Yin, Rock Fracture Mechanics, Science Press, 2016 (in Chinese).Google Scholar
  23. 23.
    H. Lan, C.D. Martin, B. Hu, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading, J. Geophys. Res. Atmos. 115 (2010) 414–431.CrossRefGoogle Scholar
  24. 24.
    C.A. Tang, S.Q. Kou, Crack propagation and coalescence in brittle materials under compression, Eng. Fract. Mech. 61 (1998) 311–324.CrossRefGoogle Scholar
  25. 25.
    J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, Berlin Heidelberg, 1992.CrossRefGoogle Scholar
  26. 26.
    G. Chen, J. Kemeny, S. Harpalani, Fracture propagation and coalescence in marble plates with pre-cut notches under compression, in: Symposium on Fracture and Jointed Rock Mass, Lake Taho, CA, 1992, pp. 443–448.Google Scholar
  27. 27.
    G. Li, C.A. Tang, A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock, Int. J. Rock Mech. Min. Sci. 74 (2015) 133–150.CrossRefGoogle Scholar
  28. 28.
    X.P. Zhang, Q. Liu, S. Wu, X. Tang, Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression, Eng. Geol. 199 (2015) 74–90.CrossRefGoogle Scholar
  29. 29.
    Y. Zhao, L. Zhang, W. Wang, C. Pu, W. Wan, Cracking and stress–strain behavior of rock-like material containing two flaws under uniaxial compression, Rock Mech. Rock Eng. 49 (2016) 2665–2687.CrossRefGoogle Scholar
  30. 30.
    H. Haeri, V. Sarfarazi, M.F. Marji, A. Hedayat, Z. Zhu, Experimental and numerical study of shear fracture in brittle materials with interference of initial double cracks fracture analyses of different pre-holed concrete specimens under compression, Acta Mech. Solida Sin. 29 (2016) 555–566.CrossRefGoogle Scholar
  31. 31.
    L.O. Afolagboye, J. He, S. Wang, Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression, Acta Mech. Sin. 33 (2017) 394–405.CrossRefGoogle Scholar
  32. 32.
    Q. Li, Q. Yang, M. Luan, Study of curved wing crack path by theory and testing methods, Rock Soil Mech. 31 (2010) 345–349 (in Chinese).Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Department of Engineering MechanicsSoutheast UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory of Engineering MechanicsSoutheast UniversityNanjingChina

Personalised recommendations