Acta Mechanica Solida Sinica

, Volume 30, Issue 6, pp 618–629 | Cite as

A quadratic yield function with multi-involved-yield surfaces describing anisotropic behaviors of sheet metals under tension/compression

  • Haibo Wang
  • Yu Yan
  • Min Wan
  • Zhengyang Chen
  • Qiang Li
  • Dong He
Article

Abstract

A quadratic yield function which can describe the anisotropic behaviors of sheet metals with tension/compression symmetry and asymmetry is proposed. Five mechanical properties are adopted to determine the coefficients of each part of the yield function. For particular cases, the proposed yield function can be simplified to Mises or Hill’s quadratic yield function. The anisotropic mechanical properties are expressed by defining an angle between the current normalized principal stress space and the reference direction with the assumption of orthotropic anisotropy. The accuracy of the proposed yield function in describing the anisotropy under tension and compression is demonstrated.

Keywords

Quadratic yield function Anisotropic materials Multi-yield systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Zhan, K. Guo, H. Yang, Advances and trends in plastic forming technologies for welded tubes, Chin. J. Aeronaut. 29 (2) (2016) 305–315.CrossRefGoogle Scholar
  2. 2.
    B. Meng, M. Wan, X. Wu, et al., Inner wrinkling control in hydrodynamic deep drawing of an irregular surface part using drawbeads, Chin. J. Aeronaut. 27 (3) (2014) 697–707.CrossRefGoogle Scholar
  3. 3.
    X. Li, N. Son, G. Guo, et al., Prediction of forming limit curve (FLC) for Al–Li alloy 2198-T3 sheet using different yield functions, Chin. J. Aeronaut. 26 (5) (2013) 1317–1323.CrossRefGoogle Scholar
  4. 4.
    R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond A 193 (1948) 281–297.MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Park, K. Chung, Non-associated flow rule with symmetric stiffness modulus for isotropic-kinematic hardening and its application for earing in circular cup drawing, Int. J. Solids Struct. 49 (2012) 3582–3593.CrossRefGoogle Scholar
  6. 6.
    H. Wang, M. Wan, Y. Yan, X. Wu, Effect of the solving method of parameters on the description ability of the yield criterion about the anisotropic behavior, J. Mech. Eng. 49 (2013) 45–53.CrossRefGoogle Scholar
  7. 7.
    R. Hill, Theoretical plasticity of textured aggregates, Math. Proc. Camb. Phil. Soc. 85 (1979) 179–191.MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Hill, Constitutive modelling of orthotropic plasticity in sheet metals, J. Mech. Phys. Solids 38 (1990) 405–417.MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Hill, A user-friendly theory of orthotropic plasticity in sheet metals, Int. J. Mech. Sci. 35 (1993) 19–25.CrossRefGoogle Scholar
  10. 10.
    F. Barlat, J. Lia, Plastic behavior and stretchability of sheet metals. 1. A yield function for orthotropic sheets under plane-stress conditions, Int. J. Plast. 5 (1989) 5166.CrossRefGoogle Scholar
  11. 11.
    F. Barlat, D.J. Lege, J.C. Brem, A six-component yield function for anisotropic materials, Int. J. Plast. 7 (1991) 693–712.CrossRefGoogle Scholar
  12. 12.
    F. Barlat, R.C. Becker, Y. Hayashida, Y. Maeda, M. Yanagawa, K. Chung, J.C. Brem, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, Yielding description of solution strengthened aluminum alloys, Int. J. Plast. 13 (1997) 385–401.CrossRefGoogle Scholar
  13. 13.
    F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker, S. Makosey, Yield function development for aluminum alloy sheets, J. Mech. Phys. Solids 45 (11–12) (1997) 1727–1763.CrossRefGoogle Scholar
  14. 14.
    D. Banabic, Sheet Metal Forming Processes Constitutive Modeling and Numerical Simulation, Springer-verlag, Berlin Heidelberg, Dordrecht London New York, 2010.CrossRefGoogle Scholar
  15. 15.
    F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets—Part 1: theory, Int. J. Plast. 19 (2003) 1297–1319.CrossRefGoogle Scholar
  16. 16.
    H. Wang, M. Wan, Forming limit of sheet metals based on mixed hardening model, Sci. China Ser. E Technolog. Sci. 52 (5) (2009) 1202–1211.CrossRefGoogle Scholar
  17. 17.
    H. Wang, Y. Ya, M. Wan, X. Wu, Experimental investigation and constitutive modeling for the hardening behavior of 5754O aluminum alloy sheet under two-stage loading, Int. J. Solids Struct. 49 (26) (2012) 3693–3710.CrossRefGoogle Scholar
  18. 18.
    H. Wang, M. Wan, X. Wu, Y. Yan, The equivalent plastic strain-dependent Yld2000-2d yield function and the experimental verification, Comput. Mater. Sci. 47 (1) (2009) 12–22.CrossRefGoogle Scholar
  19. 19.
    H. Wang, M. Wa, Y. Yan, Effect of the flow stress–strain relation on the forming limit of 5754O aluminum alloy, Trans. Nonferrous Metals Soc. China 22 (10) (2012) 2370–2378.CrossRefGoogle Scholar
  20. 20.
    F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, Linear transformation based anisotropic yield function, Int. J. Plast. 21 (2005) 1009–1039.CrossRefGoogle Scholar
  21. 21.
    J.W. Yoon, F. Barlat, R.E. Dick, M.E. Karabin, Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, Int. J. Plast. 22 (2006) 174–193.CrossRefGoogle Scholar
  22. 22.
    F. Kabirian, A.S. Khan, Anisotropic yield criteria in σ-τ stress space for materials with yield asymmetry, Int. J. Solids Struct. 67–68 (2015) 116–126.CrossRefGoogle Scholar
  23. 23.
    Y. Koh, D. Kim, D.Y. Seoka, J. Bak, S.W. Kim, Y.S. Lee, K. Chung, Characterization of mechanical property of magnesium AZ31 alloy sheets for warm temperature forming, Int. J. Mech. Sci. 93 (2015) 204–217.CrossRefGoogle Scholar
  24. 24.
    N. Chandola, R.A. Lebensohn, O. Cazacu, Combined effects of anisotropy and tension–compression asymmetry on the torsional response of AZ31 Mg, Int. J. Solids Struct. 58 (2015) 190–200.CrossRefGoogle Scholar
  25. 25.
    G. Tari, M.J. Worswick, Elevated temperature constitutive behavior and simulation of warmforming of AZ31BD, J. Mater. Process. Technol. 221 (2015) 40–55.CrossRefGoogle Scholar
  26. 26.
    D.G. Taria, M.J. Worswicka, U. Alia, M.A. Gharghourib, Mechanical response of AZ31B magnesium alloy: experimental characterization and material modeling considering proportional loading at room temperature, Int. J. Plast. 55 (2014) 247–267.CrossRefGoogle Scholar
  27. 27.
    W. Muhammad, M. Mohammadi, J. Kang, R.K. Mishra, K. Inal, An elasto-plastic constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths, Int. J. Plast. 70 (2015) 30–59.CrossRefGoogle Scholar
  28. 28.
    A.S. Khan, S. Yu, Deformation induced anisotropic responses of Ti-6Al-4V alloy. Part I: experiments, Int. J. Plast. 38 (2012) 1–13.CrossRefGoogle Scholar
  29. 29.
    A.S. Khan, E. Pandey, T. Gnaupel-Herold, R.K. Mishra, Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, Int. J. Plast. 27 (2011) 688–706.CrossRefGoogle Scholar
  30. 30.
    C. Liu, Y. Huang, M.G. Stout, On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study, Acta Mater. 45 (1997) 2397–2406.CrossRefGoogle Scholar
  31. 31.
    O. Cazacu, F. Barlat, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast. 20 (2004) 2027–2045.CrossRefGoogle Scholar
  32. 32.
    O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal close packed metals, Int. J. Plast. 22 (2006) 1171–1194.CrossRefGoogle Scholar
  33. 33.
    B. Plunkett, O. Cazacu, F. Barlat, Orthotropic yield criterion for description of anisotropy in tension and compression of sheet metals, Int. J. Plast. 24 (2008) 847–866.CrossRefGoogle Scholar
  34. 34.
    A.S. Khan, S. Yu, H. Liu, Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part II: a strain rate and temperature dependent anisotropic yield function, Int. J. Plast. 38 (2012) 14–26.CrossRefGoogle Scholar
  35. 35.
    J.W. Yoon, Y. Lou, J. Yoon, M.V. Glazoff, Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast. 56 (2014) 184–202.CrossRefGoogle Scholar
  36. 36.
    H. Wu, Anisotropic plasticity for sheet metals using the concept of combined isotropic-kinematic hardening, Int. J. Plast. 18 (2002) 1661–1682.CrossRefGoogle Scholar
  37. 37.
    H. Wu, H. Hong, Y. Shiao, Anisotropic plasticity with application to sheet metals, Int. J. Mech. Sci. 41 (1999) 703–724.CrossRefGoogle Scholar
  38. 38.
    C. Sansour, I. Karsaj, J. Soric, A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling, Int. J. Plast. 22 (2006) 2346–2365.CrossRefGoogle Scholar
  39. 39.
    R.K. Verma, T. Kuwabara, K. Chung, A. Haldar, Experimental evaluation and constitutive modeling of non-proportional deformation for asymmetric steels, Int. J. Plast. 27 (2011) 82–101.CrossRefGoogle Scholar
  40. 40.
    W. Hu, A novel quadratic yield model to describe the feature of multi-yield-surface of rolled sheet metals, Int. J. Plast. 23 (2007) 2004–2028.CrossRefGoogle Scholar
  41. 41.
    H. Vegter, A.H. Boogaard, A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, Int. J. Plast. 22 (2006) 557–580.CrossRefGoogle Scholar
  42. 42.
    A.S. Khan, S. Huang, Continuum Theory of Plasticity, Wiley, 1995.Google Scholar
  43. 43.
    H. Aretz, A non-quadratic plane stress yield function for orthotropic sheet metals, J. Mater. Process. Technol. 168 (2005) 1–9.CrossRefGoogle Scholar
  44. 44.
    F. Yoshida, H. Hamasaki, T. Uemori, A user-friendly 3D yield function to describe anisotropy of steel sheets, Int. J. Plast. 45 (2013) 119–139.CrossRefGoogle Scholar
  45. 45.
    T. Kuwabara, S. Ikeda, T. Kuroda, Measurement and analysis of differential work-hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Process Technol. 80–81 (1998) 517–523.CrossRefGoogle Scholar
  46. 46.
    T. Kuwabara, Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, Int. J. Plast. 23 (2007) 385–419.CrossRefGoogle Scholar
  47. 47.
    T. Kuwabara, F. Sugawara, Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range, Int. J. Plast. 45 (2013) 103–118.CrossRefGoogle Scholar
  48. 48.
    X. Wu, Investigation of the Plastic Deformation Behavior of Anisotropic Sheet Metals Under Different Loading Paths, Doctoral Dissertation, Beihang University, Beijing, China, 2004.Google Scholar
  49. 49.
    X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast. 23 (2007) 44–86.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Haibo Wang
    • 1
  • Yu Yan
    • 1
  • Min Wan
    • 2
  • Zhengyang Chen
    • 1
  • Qiang Li
    • 1
  • Dong He
    • 1
  1. 1.School of Mechanical and Materials EngineeringNorth China University of TechnologyBeijingChina
  2. 2.School of Mechanical Engineering and AutomationBeihang UniversityBeijingChina

Personalised recommendations