Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 6, pp 674–682 | Cite as

Forced vibration control of an axially moving beam with an attached nonlinear energy sink

  • Ye-Wei Zhang
  • Shuai Hou
  • Ke-Fan Xu
  • Tian-Zhi Yang
  • Li-Qun Chen
Article

Abstract

This paper investigates a highly efficient and promising control method for forced vibration control of an axially moving beam with an attached nonlinear energy sink (NES). Because of the axial velocity, external force and external excitation frequency, the beam undergoes a high-amplitude vibration. The Galerkin method is applied to discretize the dynamic equations of the beam—NES system. The steady-state responses of the beams with an attached NES and with nothing attached are acquired by numerical simulation. Furthermore, the fast Fourier transform (FFT) is applied to get the amplitude—frequency responses. From the perspective of frequency domain analysis, it is explained that the NES has little effect on the natural frequency of the beam. Results confirm that NES has a great potential to control the excessive vibration.

Keywords

Forced vibration Axially moving beam FFT Nonlinear energy sink (NES) External excitation frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Wickert, Nonlinear vibration of a traveling tensioned beam, Int. J. Non Linear Mech. 27 (1992) 503–517.CrossRefGoogle Scholar
  2. 2.
    Y. Wang, J.W. Zu, Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain, Appl. Math. Mech. 38 (2017) 625–646.MathSciNetCrossRefGoogle Scholar
  3. 3.
    L.Q. Chen, X.D. Yang, Nonlinear free transverse vibration of an axially moving beam: comparison of two models, J. Sound Vib. 299 (2007) 348–354.CrossRefGoogle Scholar
  4. 4.
    Y.Q. Wang, W. Du, X.B. Huang, S.W. Xue, Study on the dynamic behavior of axially moving rectangular plates partially submersed in fluid, Acta Mech. Solida Sin. 28 (2015) 706–721.CrossRefGoogle Scholar
  5. 5.
    Y.Q. Wang, J.W. Zu, Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid, Compos. Struct. 164 (2017) 130–144.CrossRefGoogle Scholar
  6. 6.
    M.H. Ghayesh, Coupled longitudinal-transverse dynamics of an axially accelerating beam, J. Sound Vib. 331 (2012) 5107–5124.CrossRefGoogle Scholar
  7. 7.
    H. Ding, J.W. Zu, Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model, J. Sound Vib. 332 (2013) 6472–6487.CrossRefGoogle Scholar
  8. 8.
    Y.Q. Wang, X.B. Huang, J. Li, Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process, Int. J. Mech. Sci. 110 (2016) 201–216.CrossRefGoogle Scholar
  9. 9.
    M. Fard, S. Sagatun, Exponential stabilization of a transversely vibrating beam via boundary control, J. Sound Vib. 240 (2011) 613–622.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.J. Wang, Q.H. Li, Active vibration control methods of axially moving materials - a review, J. Vib. Control 10 (2004) 475–491.CrossRefGoogle Scholar
  11. 11.
    Y.K. Wang, C.D. Mote, Active and passive vibration control of an axially moving beam by smart hybrid bearings, J. Sound Vib. 195 (1996) 575–584.CrossRefGoogle Scholar
  12. 12.
    M.H. Ghayesh, M. Amabili, Steady-state transverse response of an axially moving beam with time-dependent axial speed, Int. J. Non Linear Mech. 49 (2013) 40–49.CrossRefGoogle Scholar
  13. 13.
    J. Yuh, T. Young, Dynamic modeling of an axially moving beam in rotation: simulation and experiment, J. Dyn. Syst. Measure. Control 113 (1991) 34–40.CrossRefGoogle Scholar
  14. 14.
    H. Ding, J.W. Zu, Steady-state responses of pulley-belt systems with a one-way clutch and belt bending stiffness, ASME J. Vib. Acoust. 136 (2014) 1–14.CrossRefGoogle Scholar
  15. 15.
    M.H. Ghayesh, M. Amabili, M.P. Païdoussis, Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis, Nonlinear Dyn. 70 (2012) 335–354.MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.L. Huang, S.H. Chen, R.K.L. Su, Y.Y. Lee, Nonlinear analysis of forced responses of an axially moving beam by incremental harmonic balance method, Mech. Adv. Mater. Struct. 18 (2011) 611–616.CrossRefGoogle Scholar
  17. 17.
    M.H. Ghayesh, S. Kazemirad, M. Amabili, Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance, Mech. Mach. Theory 52 (2012) 18–34.CrossRefGoogle Scholar
  18. 18.
    O.V. Gendelman, Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators, Nonlinear Dyn. 25 (2001) 237–253.CrossRefGoogle Scholar
  19. 19.
    D.M. McFarland, L.A. Bergman, A.F. Vakakis, Experimental study of non-linear energy pumping occurring at a single fast frequency, Int. J. Non Linear Mech. 40 (2005) 891–899.CrossRefGoogle Scholar
  20. 20.
    O.V. Gendelman, Targeted energy transfer in systems with external and self-excitation, ASCE J. Eng. Mech. 225 (2011) 2007–2043.Google Scholar
  21. 21.
    O. Gendelman, L.I. Manevitch, A.F. Vakakis, R.M. Closkey, Energy pumping in nonlinear mechanical oscillators: part I-dynamics of the underlying Hamiltonian systems, ASME J. Appl. Mech. Trans. 68 (2001) 34–41.MathSciNetCrossRefGoogle Scholar
  22. 22.
    A.F. Vakakis, O. Gendelman, Energy pumping in coupled mechanical oscillators II: resonance capture, ASME J. Appl. Mech. Trans. 68 (2001) 42–48.CrossRefGoogle Scholar
  23. 23.
    A.F. Vakakis, O.V. Gendelman, L.A. Bergman, D.M McFarland, G. Kerschen, Y.S. Lee, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Springer Science & Business Media, 2008, pp. 161–229.Google Scholar
  24. 24.
    H.L. Dai, A. Abdelkefi, L. Wang, Usefulness of passive non-linear energy sinks in controlling galloping vibrations, Int. J. Non Linear Mech. 81 (2016) 83–94.CrossRefGoogle Scholar
  25. 25.
    A Luongo, D. Zulli, Nonlinear energy sink to control elastic strings: the internal resonance case, Nonlinear Dyn. 81 (2015) 425–435.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y.W. Zhang, J. Zang, T.Z. Yang, B. Fang, X. Wen, Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink, Math. Prob. Eng. (2013) 348042 2013.Google Scholar
  27. 27.
    T.Z. Yang, X.D. Yang, Y.H. Li, B. Fang, Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity, J. Vib. Control 20 (2014) 1293–1300.MathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Angelo, Z. Daniele, Nonlinear energy sink to control elastic strings: the internal resonance case, Nonlinear Dyn. 81 (2015) 425–435.MathSciNetCrossRefGoogle Scholar
  29. 29.
    F. Georgiades, A.F. Vakakis, Dynamics of a linear beam with an attached local nonlinear energy sink, Commun. Nonlinear Sci. Numer. Simul. 12 (2007) 643–651.CrossRefGoogle Scholar
  30. 30.
    M. Kani, S.E. Khadem, M.H. Pashaei, M. Dardel, Vibration control of a nonlinear beam with a nonlinear energy sink, Nonlinear Dyn. 83 (2015) 1–22.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Y.W. Zhang, B. Yuan, B. Fang, L.Q. Chen, Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink, Nonlinear Dyn. 87 (2016) 1159–1167.CrossRefGoogle Scholar
  32. 32.
    W.D. Zhu, C.D. Mote, Free and forced response of an axially moving string transporting a damped linear oscillator, J. Sound Vib. 177 (1994) 591–610.CrossRefGoogle Scholar
  33. 33.
    R. McDonald, N. Namachchivaya, Pipes conveying pulsating fluid near a 0:1 resonance: local bifurcations, J. Fluids Struct. 21 (2005) 629–664.CrossRefGoogle Scholar
  34. 34.
    Y.W. Zhang, Z. Zhang, L.Q. Chen, T.Z. Yang, B. Fang, J. Zang, Impulse induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks, Nonlinear Dyn. 82 (2015) 61–71.MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Jin, Z. Song, Parametric resonances of supported pipes conveying pulsating fluid, J. Fluids Struct. 20 (2005) 763–783.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Ye-Wei Zhang
    • 1
  • Shuai Hou
    • 1
  • Ke-Fan Xu
    • 1
  • Tian-Zhi Yang
    • 1
  • Li-Qun Chen
    • 2
    • 3
  1. 1.Department of AstronauticsShenyang Aerospace UniversityShenyangChina
  2. 2.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  3. 3.Department of MechanicsShanghai UniversityShanghaiChina

Personalised recommendations