Acta Mechanica Solida Sinica

, Volume 30, Issue 5, pp 484–492 | Cite as

Dynamic response of a Q&P steel to high-strain-rate tension

  • Huanran Wang
  • Wenchao Zhang
  • Dongfang Ma
  • Bohan Ma
  • Danian Chen
  • Xin Yang
  • Chunlei Fan


The experimental study on the volume fraction of retained austenite for QP980CR steel under high-strain-rate tension is briefly described. An interrupted tensile split Hopkinson bar (TSHB) is developed to control the elongation of specimens. The QP980CR steel samples recovered from the interrupted TSHB tests are investigated using synchrotron X-ray diffraction (XRD) to analyze the effects of strain and strain rate on the martensitic transformation of retained austenite. A constitutive model of QP980CR steel coupling with the transformation-induced plasticity (TRIP) effect is presented based on Delannay’s mean-field modeling. The stress—strain curves of quasi-static and dynamic tensile tests for QP980CR steel are compared with the results predicted by the presented constitutive model. The diffuse necking of QP980CR steel sheet specimens in TSHB tests is analyzed using Batra and Wei’s instability criterion and the presented constitutive model. The effects of strain rate and temperature on the dynamic tensile fracture strain of QP980CR steel are also given. © 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied


Interrupted Hopkinson test Phase transformation Multiphase constitutive model Dynamic fracture QP980CR steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.D. Horvath, J.R. Fekete, Opportunities and challenges for increased usage of advanced high strength steels in automotive applications, in: Proceedings of the International Conference on Advanced High-Strength Sheet Steels for Automotive Application, Warrendale, PA, AIST, 2004, pp. 3–10.Google Scholar
  2. 2.
    J.G. Speer, C. Fernando, R. Assunção, D.K. Matlock, D.V. Edmonds, The “quenching and partitioning” process: background and recent progress, Mater. Res. 8 (4) (2005) 417–423.CrossRefGoogle Scholar
  3. 3.
    S. Zang, L. Sun, C. Niu, Measurements of Bauschinger effect and transient behavior of a quenched and partitioned advanced high strength steel, Mater. Sci. Eng. A 586 (2013) 31–37.CrossRefGoogle Scholar
  4. 4.
    L. Ding, J. Lin, Z. Pang, L. Zhang, Multiphase constitutive model of ultra-high strength steel QP980 coupling with TRIP effect, J. Plast. Eng. 20 (2013) 23–26 (in Chinese).Google Scholar
  5. 5.
    F.D. Fischer, Q.P. Sun, K. Tanaka, Transformation-induced plasticity (TRIP), Appl. Mech. Rev. 49 (1996) 317–364.CrossRefGoogle Scholar
  6. 6.
    G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall. Trans. A 6A (1975) 791–795.CrossRefGoogle Scholar
  7. 7.
    L. Delannay, P. Jacques, T. Pardoen, Modelling of the plastic flow of trip-aided multiphase steel based on an incremental mean-field approach, Int. J. Solids Struct. 45 (2008) 1825–1843.CrossRefGoogle Scholar
  8. 8.
    X. Yang, X. Xiong, Z. Yin, H. Wang, J. Wang, D. Chen, Interrupted test of advanced high strength steel with tensile split Hopkinson bar method, Exp. Mech. 54 (2014) 641–652.CrossRefGoogle Scholar
  9. 9.
    W.J. Dan, W.G. Zhang, S.H. Li, Z.Q. Lin, A model for strain-induced martensitic transformation of TRIP steel with strain rate, Comput. Mater. Sci. 40 (2007) 101–107.CrossRefGoogle Scholar
  10. 10.
    H.Y. Yu, Z.Q. Lin, G.L. Chen, S.H. Li, Overall stress–strain relationship of cold rolled transformation induced plasticity multiphase steels, Mater. Sci. Technol. 21 (3) (2005) 311–316.CrossRefGoogle Scholar
  11. 11.
    J.A. Rodriguez-Martinez, R. Pesci, A. Rusinek, Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature, Mater. Sci. Eng. A 528 (2011) 5974–5982.CrossRefGoogle Scholar
  12. 12.
    R. Ueji, Y. Takagi, N. Tsuchida, K. Shinagawa, Y. Tanaka, T. Mizuguchi, Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel, Mater. Sci. Eng. A 576 (2013) 14–20.CrossRefGoogle Scholar
  13. 13.
    P. Verleysen, V. Benedict, T. Verstraete, D. Joris, Numerical study of the influence of the specimen geometry on split Hopkinson bar tensile test results, Latin Am. J. Solids Struct. 6 (2009) 285–298.Google Scholar
  14. 14.
    R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, M. Finn, High strain rate tensile testing of automotive aluminum alloy sheet, Int. J. Impact Eng. 32 (2005) 541–560.CrossRefGoogle Scholar
  15. 15.
    D.F. Ma, D.N. Chen, S.X. Wu, H.R. Wang, Y.J. Hou, C.Y. Cai, An interrupted tensile testing at high strain rates for pure copper bars, J. Appl. Phys. 108 (2010) 114902.CrossRefGoogle Scholar
  16. 16.
    D.F. Ma, D.N. Chen, S.X. Wu, H.R. Wang, C.Y. Cai, A dynamic investigation of observable void growth and coalescence in pure copper sheets, J. Appl. Phys. 110 (2011) 094905.CrossRefGoogle Scholar
  17. 17.
    R. Gerlach, C. Kettenbeil, N. Petrinic, A new split Hopkinson tensile bar design, Int. J. Impact Eng. 50 (2012) 63–67.CrossRefGoogle Scholar
  18. 18.
    T. Borvik, O.S. Hopperstad, T. Berstad, On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study, Eur. J. Mech. A Solids 22 (2003) 15–32.CrossRefGoogle Scholar
  19. 19.
    G. Haugou, E. Markiewiczb, J. Fabisa, On the use of the non direct tensile loading on a classical split Hopkinson bar apparatus dedicated to sheet metal specimen characterization, Int. J. Impact Eng. 32 (2006) 778–798.CrossRefGoogle Scholar
  20. 20.
    Y. Chen, A.H. Clausen, O.S. Hopperstad, M. Langseth, Application of a split-Hopkinson tension bar in a mutual assessment of experimental tests and numerical predictions, Int. J. Impact Eng. 38 (2011) 824–836.CrossRefGoogle Scholar
  21. 21.
    R.C. Batra, Z.G. Wei, Instability strain and shear band spacing in simple tensile/compressive deformations of thermoviscoplastic materials, Int. J. Impact Eng. 34 (2007) 448–463.CrossRefGoogle Scholar
  22. 22.
    J.O. Hallquist, LS-DYNA Keywords Use’s Manual (Version 970), LSTC, USA, 2003.Google Scholar
  23. 23.
    H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. B 62 (1949) 676–700.CrossRefGoogle Scholar
  24. 24.
    M. Considerè, L’emploi du fer et Lacier dans Les Construc-tions, Ann. Ponts Chausses 9 (1885) 574.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Huanran Wang
    • 1
  • Wenchao Zhang
    • 1
  • Dongfang Ma
    • 1
  • Bohan Ma
    • 1
  • Danian Chen
    • 1
  • Xin Yang
    • 2
  • Chunlei Fan
    • 1
  1. 1.Mechanics and Materials Science Research CenterNingbo UniversityNingboChina
  2. 2.China Science Lab, Research & Development CenterGeneral Motors CompanyShanghaiChina

Personalised recommendations