Acta Mechanica Solida Sinica

, Volume 30, Issue 5, pp 465–473 | Cite as

Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field

  • Xi-Ping Sun
  • Yuan-Zhuo Hong
  • Hu-Liang Dai
  • Lin Wang
Article

Abstract

The nonlinear free vibration around the postbuckling configuration of nonlocal nanobeams with pinned—pinned boundary conditions are analytically investigated, considering the geometric nonlinearity arising from the mid-plane stretching and particularly the effect of a longitudinal magnetic field. When the applied axial force is small, the nanobeam is stable and its free vibration is around the straight equilibrium position. As the axial force becomes large and is beyond a certain critical value (critical axial force), however, either positive or negative non-trivial equilibrium configuration occurs and the free vibration is around the buckled configuration. The governing equation for the nanobeam before buckling exhibits a cubic nonlinearity while for a buckled nanobeam it contains both cubic and quadratic non-linearities. Based on the nonlinear governing equations, approximate analytical solutions for the postbuckling configuration in terms of the applied axial force are evaluated, showing that the magnetic field parameter has a great effect on the critical axial force, buckled displacement and linear frequencies of the nanobeam system. More interestingly, the nonlinear frequency is found to be generally higher than the linear frequency in the case of prebuckling regime while it could be lower than the linear one in the case of postbuckling regime. The nonlinear frequency can be significantly influenced by the magnetic field, the nonlinear coefficient associated with the mid-plane stretching, and the initial vibration amplitude.

Keywords

Nonlocal nanobeam Postbuckling Nonlinear frequency Magnetic field Vibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Farokhi, M.P. Paidoussis, A.K. Misra, A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators, J. Sound Vib. 378 (2016) 56–75.CrossRefGoogle Scholar
  2. 2.
    C. Li, C.W. Lim, J.L. Yu, Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load, Smart Mater. Struct. 20 (2011) 015023.CrossRefGoogle Scholar
  3. 3.
    J.W. Yoon, H.J. Hwang, Molecular dynamics modeling and simulations of a single-walled carbon-nanotube-resonator encapsulating a finite nanoparticle, Comput. Mater. Sci. 50 (2011) 2741–2744.CrossRefGoogle Scholar
  4. 4.
    J.H. Lee, J.W. Kang, Vibrational analysis of cantilevered carbon-nanotube resonator with different linear density of attached mass: molecular dynamics simulations, J. Comput. Theor. Nanosci. 10 (2013) 1863–1867.CrossRefGoogle Scholar
  5. 5.
    Y.D. Kuang, S.Q. Shi, P.K.L. Chan, C.Y. Chen, A continuum model of the van der Waals interface for determining the critical diameter of nanopumps and its application to analysis of the vibration and stability of nanopump systems, Int. J. Nonlinear Sci. Numer. Simul. 10 (2009) 1563–1575.Google Scholar
  6. 6.
    X.Y. Wang, X. Wang, G.G. Sheng, The coupling vibration of fluid-filled carbon nanotubes, J. Phys. D: Appl. Phys. 40 (2007) 2563–2572.CrossRefGoogle Scholar
  7. 7.
    N. Khosravian, H. Rafii-Tabar, Computational modelling of the flow of viscous fluids in carbon nanotubes, J. Phys. D: Appl. Phys. 40 (2007) 7046–7052.CrossRefGoogle Scholar
  8. 8.
    J. Yoon, C.Q. Ru, A. Mioduchowski, Flow-induced flutter instability of cantilever carbon nanotubes, Int. J. Solids Struct. 43 (2006) 3337–3349.CrossRefMATHGoogle Scholar
  9. 9.
    G.F. Wang, X.Q. Feng, Effects of surface elasticity and residual surface tension on the natural frequency of microbeams, Appl. Phys. Lett. 90 (2007) 231904.CrossRefGoogle Scholar
  10. 10.
    K. Kiani, A refined integro-surface energy-based model for vibration of magnetically actuated double-nanowire-systems carrying electric current, Physica E 86 (2017) 225–236.CrossRefGoogle Scholar
  11. 11.
    F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct. 39 (2002) 2731–2743.CrossRefMATHGoogle Scholar
  12. 12.
    L.L. Ke, Y.S. Wang, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Physica E 43 (2011) 1031–1039.CrossRefGoogle Scholar
  13. 13.
    J. Abdi, A. Koochi, A.S. Kazemi, M. Abadyan, Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Mater. Struct. 20 (2011) 055011.CrossRefGoogle Scholar
  14. 14.
    E.C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract. 95 (1999) 1–4.CrossRefGoogle Scholar
  15. 15.
    A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10 (1972) 1–16.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    L.F. Wang, W.L. Guo, H.Y. Hu, Flexural wave dispersion in multi-walled carbon nanotubes conveying fluids, Acta Mech. Solida Sin. 22 (2009) 623–629.CrossRefGoogle Scholar
  17. 17.
    R. Ansari, R. Gholami, S. Sahmani, A. Norouzzadeh, M. Bazdid-Vahdati, Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment, Acta Mech. Solida Sin. 28 (2015) 659–667.CrossRefGoogle Scholar
  18. 18.
    R. Barretta, L. Feo, R. Luciano, F.M. de Sciarra, R. Penna, Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation, Compos. B: Eng. 100 (2016) 208–219.CrossRefGoogle Scholar
  19. 19.
    A. Bahriami, A. Teimourian, Study on the effect of small scale on the wave reflection in carbon nanotubes using nonlocal Timoshenko beam theory and wave propagation approach, Compos. B: Eng. 91 (2016) 492–504.CrossRefGoogle Scholar
  20. 20.
    K. Kiani, Nonlocal-integro-differential modeling of vibration of elastically supported nanorods, Physica E 83 (2016) 151–163.CrossRefGoogle Scholar
  21. 21.
    S. EI-Borgi, R. Fernandes, J.N. Reddy, Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation, Int. J. Non-Linear Mech. 77 (2015) 348–363.CrossRefGoogle Scholar
  22. 22.
    Z.J. Zhang, Y.S. Liu, H.L. Zhao, W. Liu, Acoustic nanowave absorption through clustered carbon nanotubes conveying fluid, Acta Mech. Solida Sin. 29 (2016) 257–270.CrossRefGoogle Scholar
  23. 23.
    C.W. Lim, Y. Yang, New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes, J. Comput. Theor. Nanosci. 7 (2010) 988–995.CrossRefGoogle Scholar
  24. 24.
    C.W. Lim, Equilibrium and static deflection for bending of a nonlocal nanobeam, Adv. Vib. Eng. 8 (2009) 277–300.Google Scholar
  25. 25.
    M.H. Zhao, G.J. Cheng, G.N. Liu, Y.P. Shen, The analysis of crack problems with non-local elasticity, Appl. Math. Mech. 20 (1999) 135–143.CrossRefGoogle Scholar
  26. 26.
    K. Hu, Y.K. Wang, H.L. Dai, L. Wang, Q. Qian, Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory, Int. J. Eng. Sci. 105 (2016) 93–107.MathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Wang, Y.Z. Hong, H.L. Dai, Q. Ni, Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field, Acta Mech. Solida Sin. 29 (2016) 567–576.CrossRefGoogle Scholar
  28. 28.
    J.N. Reddy, Non-local nonlinear formulations for bending of classical and shear deformation theories of beams and plates, Int. J. Eng. Sci. 48 (2010) 1507–1518.CrossRefMATHGoogle Scholar
  29. 29.
    M. Simsek, Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory, Compos. B: Eng. 56 (2014) 621–628.CrossRefGoogle Scholar
  30. 30.
    J.H. He, Variational approach for nonlinear oscillators, Chaos Solitons Fract. 34 (2007) 1430–1439.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    R. Nazemnezhad, S. Hosseini-Hashemi, Non-local nonlinear free vibration of functionally graded nanobeams, Compos. Struct. 110 (2014) 192–199.CrossRefMATHGoogle Scholar
  32. 32.
    S.M. Bagdatli, Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory, Compos. B: Eng. 80 (2015) 43–52.CrossRefGoogle Scholar
  33. 33.
    R. Ansari, E. Hasrati, R. Gholami, F. Sadeghi, Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic nanobeams, Compos. B: Eng. 83 (2015) 226–241.CrossRefGoogle Scholar
  34. 34.
    R. Ansari, M.F. Oskouie, R. Gholami, F. Sadeghi, Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory, Compos. B: Eng. 89 (2016) 316–327.CrossRefGoogle Scholar
  35. 35.
    T.P. Chang, Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory, J. Vibroeng. 18 (2016) 1912–1919.CrossRefGoogle Scholar
  36. 36.
    A.H. Nayfeh, S.A. Emam, Exact solution and stability of postbuckling configurations of beams, Nonlinear Dyn. 54 (2008) 395–408.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    M. Pakdemirli, M.M.F. Karahan, A new perturbation solution for systems with strong quadratic and cubic nonlinearities, Math. Methods Appl. Sci. 33 (2009) 704–712.MathSciNetMATHGoogle Scholar
  38. 38.
    B.N. Rao, S.R.R. Pillai, Exact solution of the equation of motion to obtain non-linear vibration characteristics of thin plates, J. Sound Vib. 153 (1992) 168–170.CrossRefMATHGoogle Scholar
  39. 39.
    Y.L. Zhang, L.Q. Chen, External and internal resonances of the pipe conveying fluid in the supercritical regime, J. Sound Vib. 332 (2013) 2318–2337.CrossRefGoogle Scholar
  40. 40.
    H. Ding, L.Q. Chen, Equilibria of axially moving beams in the supercritical regime, Arch. Appl. Mech. 81 (2011) 51–64.CrossRefMATHGoogle Scholar
  41. 41.
    T.-P. Chang, Nonlinear vibration of single-walled carbon nanotubes under magnetic field by stochastic finite element method, Int. J. Struct. Stab. Dyn. 16 (2016) 1550046.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    A.V. Rao, B.N. Rao, Some remarks on the harmonic balance method for mixed-parity non-linear oscillations, J. Sound Vib. 170 (1994) 571–576.CrossRefMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Xi-Ping Sun
    • 1
  • Yuan-Zhuo Hong
    • 2
    • 3
  • Hu-Liang Dai
    • 2
    • 3
  • Lin Wang
    • 2
    • 3
  1. 1.Tianjin Research Institute Water Transport Engineering, M.O.TTest Detection Center of Water Transport EngineeringTianjinChina
  2. 2.Department of MechanicsHuazhong University of Science and TechnologyWuhanChina
  3. 3.Hubei Key Laboratory for Engineering Structural Analysis and Safety AssessmentWuhanChina

Personalised recommendations