Acta Mechanica Solida Sinica

, Volume 30, Issue 5, pp 474–483 | Cite as

Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions

  • Jingnong Jiang
  • Lifeng Wang


A nonlocal Euler beam model with second-order gradient of stress taken into consideration is used to study the thermal vibration of nanobeams with elastic boundary. An analytical solution is proposed to investigate the free vibration of nonlocal Euler beams subjected to axial thermal stress. The effects of the nonlocal parameter, thermal stress and stiffness of boundary constraint on the vibration behaviors of nanobeams are revealed. The results show that natural frequencies including the thermal stress are lower than those without the thermal stress when temperature rises. The boundary-constrained springs have significant effects on the vibration of nanobeams. In addition, numerical simulations also indicate the importance of small-scale effect on the vibration of nanobeams.


Nonlocal Euler beam Thermal stress Vibration Elastic boundary conditions Nanobeam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.CrossRefGoogle Scholar
  2. 2.
    T.W. Ebbesen, Carbon Nanotubes: Preparation and Properties, CRC Press, New York, 1996.Google Scholar
  3. 3.
    P. Kim, C.M. Lieber, Nanotube nanotweezers, Science 286 (1999) 2148–2150.CrossRefGoogle Scholar
  4. 4.
    E.V. Dirote, Trends in Nanotechnology Research, Nova Science Publishers, New York, 2004.Google Scholar
  5. 5.
    L.F. Wang, H.Y. Hu, Flexural wave propagation in single-walled carbon nanotubes, Phys. Rev. B 71 (2005) 195412.CrossRefGoogle Scholar
  6. 6.
    L.F. Wang, W.L. Guo, H.Y. Hu, Group velocity of wave propagation in carbon nanotubes, Proc. R. Soc. A 464 (2008) 1423–1438.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    C.W. Lim, Y. Yang, Wave propagation in carbon nanotubes: nonlocal elasticity induced stiffness and velocity enhancement effects, J. Mech. Mater. Struct. 5 (3) (2010) 459–476.CrossRefGoogle Scholar
  8. 8.
    C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, J. Sound Vib. 294 (2006) 1060–1072.CrossRefGoogle Scholar
  9. 9.
    J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube, Compos. Sci. Technol. 63 (2003) 1533–1542.CrossRefGoogle Scholar
  10. 10.
    N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metall. Mater. 42 (2) (1994) 475–487.Google Scholar
  11. 11.
    W.J. Poole, M.F. Ashby, N.A. Fleck, Micro-hardness of annealed and work hardened copper polycrystals, Scr. Mater. 34 (4) (1996) 559–564.CrossRefGoogle Scholar
  12. 12.
    J.S. Stolken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater. 46 (1998) 5109–5115.CrossRefGoogle Scholar
  13. 13.
    D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids 51 (8) (2003) 1477–1508.CrossRefzbMATHGoogle Scholar
  14. 14.
    Y.J. Liang, Q. Han, Prediction of the nonlocal scaling parameter for graphene sheet, Eur. J. Mech. A Solids 45 (2014) 153–160.MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal. 11 (1) (1962) 415–448.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R.A. Toupin, Theories of elasticity with couple stress, Arch. Ration. Mech. Anal. 17 (2) (1963) 85–112.MathSciNetGoogle Scholar
  17. 17.
    F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct. 39 (2002) 2731–2743.CrossRefzbMATHGoogle Scholar
  18. 18.
    R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct. 4 (1) (1968) 109–124.CrossRefzbMATHGoogle Scholar
  19. 19.
    S. Papargyri-Beskou, K.G. Tsepoura, D. Polyzos, D.E. Beskos, Bending and stability analysis of gradient elastic beams, Int. J. Solids Struct. 40 (2003) 385–400.CrossRefzbMATHGoogle Scholar
  20. 20.
    W. Xu, L.F. Wang, J.N. Jiang, Strain gradient finite element analysis on the vibration of double-layered graphene sheets, Int. J. Comput. Methods 13 (3) (2016) 1650011.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (9) (1983) 4703–4710.CrossRefGoogle Scholar
  22. 22.
    Y.Q. Zhang, G.R. Liu, J.S. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Phys. Rev. B 70 (2004) 205430.CrossRefGoogle Scholar
  23. 23.
    J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci. 45 (2007) 288–307.CrossRefzbMATHGoogle Scholar
  24. 24.
    J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys. 103 (2008) 023511.CrossRefGoogle Scholar
  25. 25.
    H. Babaei, A.R. Shahidi, Free vibration analysis of quadrilateral nanoplates based on nonlocal continuum models using the Galerkin method: the effects of small scale, Meccanica 48 (2013) 971–982.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Y.J. Liang, Q. Han, Prediction of the nonlocal scaling parameter for graphene sheet, Eur. J. Mech. A Solids 45 (2014) 153–160.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Y.Q. Zhang, X. Liu, G.R. Liu, Thermal effect on transverse vibrations of double-walled carbon nanotubes, Nanotechnology 18 (2007) 445701.CrossRefGoogle Scholar
  28. 28.
    A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys. 41 (2008) 225404.CrossRefGoogle Scholar
  29. 29.
    T. Murmu, S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci. 46 (4) (2009) 854–859.CrossRefGoogle Scholar
  30. 30.
    F. Ebrahimi, E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments, Compos. Struct. 128 (2015) 363–380.CrossRefGoogle Scholar
  31. 31.
    W.L. Li, Free vibration of beams with general boundary conditions, J. Sound Vib. 237 (2000) 709–725.CrossRefGoogle Scholar
  32. 32.
    W.L. Li, M.W. Bonilha, J. Xiao, Vibrations of two beams elastically coupled together at an arbitrary angle, Acta Mech. Solida Sin. 25 (1) (2012) 61–71.Google Scholar
  33. 33.
    G.Y. Jin, T.G. Ye, Z. Su, A Uniform Accurate Solution for Laminated Beams, Plates and Shells with General Boundary Conditions, Science Press, Beijing, 2015.zbMATHGoogle Scholar
  34. 34.
    K. Kiani, A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, Int. J. Mech. Sci. 52 (2010) 1343–1356.CrossRefGoogle Scholar
  35. 35.
    M.A.D. Rosa, M. Lippiello, Nonlocal frequency analysis of embedded single-walled carbon nanotube using the differential quadrature method, Composites Part B 84 (2016) 41–51.CrossRefGoogle Scholar
  36. 36.
    L.L. Ke, Y.S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory, Smart Mater. Struct. 21 (2012) 025018.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations