Acta Mechanica Solida Sinica

, Volume 30, Issue 4, pp 390–403 | Cite as

Band structures of elastic SH waves in nanoscale multi-layered functionally graded phononic crystals with/without nonlocal interface imperfections by using a local RBF collocation method

  • Zhizhong Yan
  • Chunqiu Wei
  • Chuanzeng Zhang


A meshless radial basis function (RBF) collocation method based on the Eringen nonlocal elasticity theory is developed to calculate the band structures of ternary and quaternary nanoscale multi-layered phononic crystals (PNCs) with functionally graded (FG) interlayers. Detailed calculations are performed for anti-plane transverse waves propagating in such PNCs. The influences of FG and homogeneous interlayers, component number, nonlocal interface imperfections and nanoscale size on cut-off frequency and band structures are investigated in detail. Numerical results show that these factors have significant effects on band structures at the macroscopic and microscopic scales.


Multi-layered phononic crystals Functionally graded interlayers Nanoscale Nonlocal elasticity theory Radial basis functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Maldovan, E.L. Thomas, Periodic Materials and Interference Lithography: for Photonics, Phononics, and Mechanics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009.Google Scholar
  2. 2.
    G. Saini, T. Pezeril, D.H. Torchinsky, J. Yoon, E. Thomas, K. Nelson, Pulsed laser characterization of multicomponent polymer acoustic and mechanical properties in the sub-GHz regime, J. Mater. Res. 22 (2007) 719–723.CrossRefGoogle Scholar
  3. 3.
    Z.H. Qian, F. Jin, Z.K. Wang, K.K. Kishimoto, Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures, Int. J. Eng. Sci. 42 (2004) 673–689.CrossRefGoogle Scholar
  4. 4.
    Y. Pang, J.X. Liu, Y.S. Wang, D.N. Fang, Wave propagation in piezoelectric/piezomagnetic layered periodic composites, Acta Mech. Solida Sin. 21 (2008) 483–490.CrossRefGoogle Scholar
  5. 5.
    M. Lan, P.J. Wei, Laminated piezoelectric phononic crystal with imperfect interfaces, J. Appl. Phys. 111 (2012) 013505-1–013505-9.CrossRefGoogle Scholar
  6. 6.
    J. Woo, S. Meguid, Nonlinear analysis of functionally graded plates and shallow shells, Int. J. Solids Struct. 38 (2001) 7409–7421.CrossRefzbMATHGoogle Scholar
  7. 7.
    H.S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press Taylor & Francis Group, USA, 2009.CrossRefGoogle Scholar
  8. 8.
    L. Wang, S.I. Rokhlin, Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium, J. Mech. Phys. Solids 52 (2004) 2473–2506.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M.L. Wu, L.Y. Wu, W.P. Yang, L.W. Chen, Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials, Smart Mater. Struct. 18 (2009) 115013–115021.CrossRefGoogle Scholar
  10. 10.
    M.V. Golub, S.I. Fomenko, T.Q. Bui, C. Zhang, Y.S. Wang, Transmission and band gaps of elastic SH waves in functionally graded periodic laminates, Int. J. Solids Struct. 49 (2012) 344–354.CrossRefGoogle Scholar
  11. 11.
    X. Su, Y. Gao, Y. Zhou, The influence of material properties on the elastic band structures of one-dimensional functionally graded phononic crystals, J. Appl. Phys. 112 (2012) 123503.CrossRefGoogle Scholar
  12. 12.
    S.I. Fomenko, M.V. Golub, C. Zhang, T.Q. Bui, Y.S. Wang, In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals, Int. J. Solids Struct. 51 (2014) 2491–2503.CrossRefGoogle Scholar
  13. 13.
    X. Guo, P.J. Wei, M. Lan, L. Li, Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers, Ultrasonics 70 (2016) 158–171.CrossRefGoogle Scholar
  14. 14.
    M. Zheng, P.J. We, Band gaps of elastic waves in 1D phononic crystals with imperfect interfaces, Int. J. Mater. Metall. Mater. 16 (2009) 608–614.CrossRefGoogle Scholar
  15. 15.
    X.Y. Zhu, S. Zhong, D.Q. Sun, A.K. Ye, F.W. Deng, Investigation of phononic band gap structures considering interface effects, Physica B 450 (2014) 121–127.CrossRefGoogle Scholar
  16. 16.
    X. Guo, P.J. Wei, L. Li, Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with mechanically and dielectrically imperfect interfaces, Mech. Mater. 93 (2016) 168–183.CrossRefGoogle Scholar
  17. 17.
    N. Gomopoulos, D. Maschke, C.Y. Koh, E.L. Thomas, W. Tremel, H.J. Butt, G. Fytas, One-dimensional hypersonic phononic crystals, Nano Lett. 10 (2010) 980–984.CrossRefGoogle Scholar
  18. 18.
    L. Dhar, J.A. Rogers, High frequency one-dimensional phononic crystal characterized with a picoseconds transient grating photoacoustic technique, Appl. Phys. Lett. 77 (2000) 1402–1404.CrossRefGoogle Scholar
  19. 19.
    A.N. Cleland, D.R. Schmidt, C.S. Yung, Thermal conductance of nanostructured phononic crystals, Phys. Rev. B 64 (2001) 607–611.CrossRefGoogle Scholar
  20. 20.
    L.C. Parsons, G.T. Andrews, Observation of hypersonic crystal effects in porous silicon superlattices, Appl. Phys. Lett. 95 (2009) 1–4.CrossRefGoogle Scholar
  21. 21.
    S.P. Hepplestone, G.P. Srivastava, Hypersonic modes in nanophononic semiconductors, Phys. Rev. Lett. 101 (2008) 5938–5940.CrossRefGoogle Scholar
  22. 22.
    R.N. Ramprasad, Scalability of phononic crystal heterostructures, Appl. Phys. Lett. 87 (2005) 111101-111101-3.CrossRefGoogle Scholar
  23. 23.
    A.L. Chen, Y.S. Wang, L.L. Ke, Y.F. Guo, Z.D. Wang, Wave propagation in nanoscaled periodic layered structures, J. Comput. Theor. Nanosci. 10 (2013) 2427–2437.CrossRefGoogle Scholar
  24. 24.
    N. Zhen, Y.S. Wang, C.Z. Zhang, Surface/interface effect on band structures of nanosized phononic crystals, Mech. Res. Commun. 46 (2012) 81–89.CrossRefGoogle Scholar
  25. 25.
    C. Goffaux, J.P. Vigneron, Theoretical study of a tunable phononic band gap system, Phys. Rev. B 64 (2001) 075118.CrossRefGoogle Scholar
  26. 26.
    M.S. Kushwaha, Band gap engineering in phononic crystals, Recent Res. Dev. Appl. Phys. 2 (1999) 743–855.Google Scholar
  27. 27.
    M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites, Phys. Rev. B 60 (1999) 11993.CrossRefGoogle Scholar
  28. 28.
    J.H. Sun, T.T. Wu, Propagation of acoustic waves in phononic crystal plates and waveguides using a finite-difference time domain method, Phys. Rev. B 76 (2007) 104304.CrossRefGoogle Scholar
  29. 29.
    J.Y. Yeh, L.W. Chen, Wave propagations of a periodic sandwich beam by FEM and the transfer matrix method, Compos. Struct. 73 (2006) 53–60.CrossRefGoogle Scholar
  30. 30.
    Z.Z. Yan, Y.S. Wang, Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals, Phys. Rev. B 74 (2006) 224303.CrossRefGoogle Scholar
  31. 31.
    W. Chen, Z.J. Fu, C.S. Chen, Recent Advances in Radial Basis Function Collocation Methods, Springer Publications, , 2013.zbMATHGoogle Scholar
  32. 32.
    Z.Z. Yan, C.Q. Wei, H. Zheng, C.Z. Zhang, Phononic band structures and stability analysis using radial basis function method with consideration of different interface models, Physica B 489 (2016) 1–11.CrossRefGoogle Scholar
  33. 33.
    A.C. Eringen, Nonlocal continuum mechanics based on distributions, Int. J. Eng. Sci. 44 (2006) 141–147.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsBeijing Institute of TechnologyBeijingChina
  2. 2.Beijing Key Laboratory on MCAACIBeijing Institute of TechnologyBeijingChina
  3. 3.Chair of Structural Mechanics, Department of Civil EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations