Acta Mechanica Solida Sinica

, Volume 30, Issue 4, pp 354–368 | Cite as

Semi-permeable Yoffe-type interfacial crack analysis in MEE composites based on the strip electro-magnetic polarization saturation model

  • Xiaodong Xia
  • Zheng ZhongEmail author


Fracture analysis of a semi-permeable Yoffe-type interfacial crack propagating subsonically in magneto-electro-elastic (MEE) composites is presented based on the strip electromagnetic polarization saturation (SEMPS) model. The electro-magnetic fields inside the crack are considered under the semi-permeable boundary condition. Nonlinear effects near the interfacial crack tip are represented by different electro-magnetic saturation zones. Utilizing the extended Stroh’s method, we derive the moving dislocation densities as well as intensity factor and energy release rate for Yoffe-type MEE interfacial crack. Numerical results through an iterative approach are presented to show the characteristics of fracture-dominant parameters with respect to propagation velocity and boundary condition category. The fracture-dominant parameters under the semi-permeable boundary condition are lower than those under the impermeable one, which implies that the electro-magnetic fields in the crack gap can retard the propagation of MEE interfacial crack.


Yoffe-type interfacial crack Semi-permeable boundary condition Polarization saturation Fracture toughness Magneto-electro-elastic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ramesh, Spaldin, N.A. Multiferroics, Progress and prospects in thin films, Nat. Mater. 6 (2007) 21–29.CrossRefGoogle Scholar
  2. 2.
    N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, Multifunctional magnetoelectric materials for device applications, J. Phys.: Condens. Matter 27 (2015) 504002.Google Scholar
  3. 3.
    S. Dong, J.M. Liu, S.W. Cheong, Z.F. Ren, Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology, Adv. Phys. 64 (2015) 519–626.CrossRefGoogle Scholar
  4. 4.
    Y.F. Cao, Y.Y. Li, Y.Y. Li, G.N. Wei, Y. Ji, K.Y. Wang, Magnetic coupling in ferromagnetic semiconductor GaMnAs/AlGaMnAs bilayer devices, Sci. China Phys. Mech. Astron. 57 (2014) 1471–1475.CrossRefGoogle Scholar
  5. 5.
    P.X. Zhang, G.F. Yin, Y.Y. Wang, B. Cui, F. Pan, C. Song, Electrical control of antiferromagnetic metal up to 15 nm, Sci. China Phys. Mech. Astron. 59 (2016) 687511.CrossRefGoogle Scholar
  6. 6.
    S.X. Dong, J.R. Cheng, J.F. Li, D. Viehland, Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb (Zr, Ti) O3 under resonant drive, Appl. Phys. Lett. 83 (2003) 4812–4814.CrossRefGoogle Scholar
  7. 7.
    M.M. Vopson, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State. Mater. Sci. 40 (2015) 223–250.CrossRefGoogle Scholar
  8. 8.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759–765.CrossRefGoogle Scholar
  9. 9.
    Z.C. Zhang, X.Z. Wang, Effective multi-field properties of electro-magneto-thermoelastic composites estimated by finite element method approach, Acta Mech. Solida Sin. 28 (2015) 145–155.CrossRefGoogle Scholar
  10. 10.
    C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys. 103 (2008) 031101.CrossRefGoogle Scholar
  11. 11.
    T. Taniyama, Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces, J. Phys.: Condens. Matter 27 (2015) 504001.Google Scholar
  12. 12.
    C. Häusler, H. Jelitto, P. Neumeister, H. Balke, G. Schneider, Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading, Int. J. Fract. 160 (2009) 43–54.CrossRefGoogle Scholar
  13. 13.
    G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides, Phys. Rev. B 64 (2001) 214408.CrossRefGoogle Scholar
  14. 14.
    M. Ayatollahi, R. Bagheri, Dynamic behavior of several cracks in functionally graded strip subjected to anti-plane time-harmonic concentrated loads, Acta Mech. Solida Sin. 26 (2013) 691–705.CrossRefGoogle Scholar
  15. 15.
    J. Wu, H. Zhang, Y. Zheng, A concurrent multiscale method for simulation of crack propagation, Acta Mech. Solida Sin. 28 (2015) 235–251.CrossRefGoogle Scholar
  16. 16.
    L.B. Freund, Dynamic Fracture Mechanics. Cambridge University Press, 1998.Google Scholar
  17. 17.
    A.N. Guz, Mechanics of crack propagation in materials with initial (residual) stresses (review), Int. Appl. Mech. 47 (2011) 121–168.MathSciNetCrossRefGoogle Scholar
  18. 18.
    E.H. Yoffe, The moving griffith crack, Philos. Mag. 42 (1951) 739–750.MathSciNetCrossRefGoogle Scholar
  19. 19.
    K.B. Broberg, The propagation of a brittle crack, Ark. Fys. 18 (1960) 159–192.MathSciNetGoogle Scholar
  20. 20.
    M. Nourazar, M. Ayatollahi, Multiple moving interfacial cracks between two dissimilar piezoelectric layers under electromechanical loading, Smart Mater. Struct. 25 (2016) 075011.CrossRefGoogle Scholar
  21. 21.
    K.Q. Hu, Y.L. Kang, G.Q. Li, Moving crack at the interface between two dissimilar magnetoelectroelastic materials, Acta Mech. 182 (2006) 1–16.CrossRefGoogle Scholar
  22. 22.
    Y.P. Yue, Y.P. Wan, Multilayered piezomagnetic/piezoelectric composite with periodic interfacial Yoffe-type cracks under magnetic or electric field, Acta Mech. 225 (2014) 1–18.MathSciNetCrossRefGoogle Scholar
  23. 23.
    B.L. Wang, J.C. Han, Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials, Acta Mech. Sin. 22 (2006) 233–242.CrossRefGoogle Scholar
  24. 24.
    F.X. Li, Y. Sun, R. Rajapakse, Effect of electric boundary conditions on crack propagation in ferroelectric ceramics, Acta Mech. Sin. 30 (2014) 153–160.MathSciNetCrossRefGoogle Scholar
  25. 25.
    H.S. Nan, B.L. Wang, Influence of residual surface stress on the fracture of nanoscale piezoelectric materials with conducting cracks, Sci. China Phys. Mech. Astron. 57 (2014) 280–285.CrossRefGoogle Scholar
  26. 26.
    V.Z. Parton, Fracture mechanics of piezoelectric materials, Acta Astronaut. 3 (1976) 671–683.CrossRefGoogle Scholar
  27. 27.
    W.F. Deeg, The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids (1980).Google Scholar
  28. 28.
    G. Schneider, F. Felten, R. McMeeking, The electrical potential difference across cracks in PZT measured by Kelvin Probe Microscopy and the implications for fracture, Acta Mater. 51 (2003) 2235–2241.CrossRefGoogle Scholar
  29. 29.
    R. Li, G.A. Kardomateas, The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials, J. Appl. Mech. 73 (2006) 220–227.CrossRefGoogle Scholar
  30. 30.
    C.M. Landis, Energetically consistent boundary conditions for electromechanical fracture, Int. J. Solids Struct. 41 (2004) 6291–6315.CrossRefGoogle Scholar
  31. 31.
    B.L. Wang, Y.W. Mai, Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solids Struct. 44 (2007) 387–398.CrossRefGoogle Scholar
  32. 32.
    T.H. Hao, Z.Y. Shen, A new electric boundary condition of electric fracture mechanics and its applications, Eng. Fract. Mech. 47 (1994) 793–802.CrossRefGoogle Scholar
  33. 33.
    T.H. Hao, Steady propagate crack in a transverse isotropic piezoelectric material considering the permittivity of the medium in the crack gap, Int. J. Fract. 118 (2002) 239–249.CrossRefGoogle Scholar
  34. 34.
    N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y.H. Chu, A.P. Baddorf, L.Q. Chen, R. Ramesh, S.V. Kalinin, Deterministic control of ferroelastic switching in multiferroic materials, Nat. Nanotechnol. 4 (2009) 868–875.CrossRefGoogle Scholar
  35. 35.
    S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, R.C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater. 9 (2010) 756–761.CrossRefGoogle Scholar
  36. 36.
    D.M. Evans, A. Schilling, A. Kumar, D. Sanchez, N. Ortega, M. Arredondo, R.S. Katiyar, J.M. Gregg, J.F. Scott, Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT, Nat. Commun. 4 (2013) 1534.CrossRefGoogle Scholar
  37. 37.
    X.D. Xia, Z. Zhong, Tuning of non-uniform switch toughening in ferroelectric composites by an electric field, Acta Mech. Sin. 32 (2016) 866–880.MathSciNetCrossRefGoogle Scholar
  38. 38.
    S.P. Shen, T. Nishioka, Z.B. Kuang, Z.X. Liu, Nonlinear electromechanical interfacial fracture for piezoelectric materials, Mech. Mater. 32 (2000) 57–64.CrossRefGoogle Scholar
  39. 39.
    S.P. Shen, Z.B. Kuang, T. Nishioka, Dynamic mode-III interfacial crack in ferroelectric materials, Int. J. Appl. Electromagn. Mech. 11 (2000) 211–222.Google Scholar
  40. 40.
    H.S. Chen, J. Ma, Y.M. Pei, D.N. Fang, Anti-plane Yoffe-type crack in ferroelectric materials, Int. J. Fract. 179 (2013) 35–43.CrossRefGoogle Scholar
  41. 41.
    X.D. Xia, Z. Zhong, A mode III moving interfacial crack based on strip magneto-electric polarization saturation model, Smart Mater. Struct. 24 (2015) 085015.CrossRefGoogle Scholar
  42. 42.
    K.Q. Hu, Z.J. Yang, Moving Dugdale type crack along the interface of two dissimilar piezoelectric materials, Theor. Appl. Fract. Mech. 74 (2014) 157–163.CrossRefGoogle Scholar
  43. 43.
    K.Q. Hu, Z.T. Chen, J.W. Fu, Moving Dugdale crack along the interface of two dissimilar magnetoelectroelastic materials, Acta Mech. 226 (2015) 2065–2076.MathSciNetCrossRefGoogle Scholar
  44. 44.
    A. Stroh, Dislocations and cracks in anisotropic elasticity, Philos. Mag. 3 (1958) 625–646.MathSciNetCrossRefGoogle Scholar
  45. 45.
    J.M. Qu, Q.Q. Li, Interfacial dislocation and its applications to interface cracks in anisotropic bimaterials, J. Elast. 26 (1991) 169–195.CrossRefGoogle Scholar
  46. 46.
    M.H. Zhao, Q.Y. Zhan, C.Y. Fan, J.N. Jia, Semi-permeable crack analysis in a 2D magnetoelectroelastic medium based on the EMPS model, Mech. Res. Commun. 55 (2014) 30–39.CrossRefGoogle Scholar
  47. 47.
    M.H. Zhao, C.Y. Fan, F. Yang, T. Liu, Analysis method of planar cracks of arbitrary shape in the isotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium, Int. J. Solids Struct. 44 (2007) 4505–4523.CrossRefGoogle Scholar
  48. 48.
    C.Y. Fan, Y.F. Zha, M.H. Zhao, E. Pan, Analytical solution of a semi-permeable crack in a 2D piezoelectric medium based on the PS model, Mech. Res. Commun. 40 (2012) 34–40.CrossRefGoogle Scholar
  49. 49.
    M.H. Zhao, C.Y. Fan, Strip electric-magnetic breakdown model in a magnetoelectroelastic medium, J. Mech. Phys. Solids 56 (2008) 3441–3458.CrossRefGoogle Scholar
  50. 50.
    D.A. Hills, Solution of Crack Problems: The Distributed Dislocation Technique. Springer, 1996.CrossRefGoogle Scholar
  51. 51.
    C.F. Gao, M.H. Zhao, P. Tong, T.Y. Zhang, The energy release rate and the J-integral of an electrically insulated crack in a piezoelectric material, Int. J. Eng. Sci. 42 (2004) 2175–2192.CrossRefGoogle Scholar
  52. 52.
    T.C.T. Ting, Barnett-Lothe tensors and their associated tensors for monoclinic materials with the symmetry plane at x3=0, J. Elast. 27 (1992) 143–165.CrossRefGoogle Scholar
  53. 53.
    J.H. Huang, Y.H. Chiu, H.K. Liu, Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions, J. Appl. Phys. 83 (1998) 5364–5370.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.>School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina
  2. 2.School of ScienceHarbin Institute of TechnologyShenzhenChina

Personalised recommendations