Acta Mechanica Solida Sinica

, Volume 30, Issue 4, pp 404–415 | Cite as

Micromechanical simulation on strength and ductility of two kinds of Al-based nanostructural materials

  • Xu He
  • Linli Zhu
  • Jinling Liu
  • Linan An


The nanostructured Al-based composites possess the combination of high yield strength and good ductility. In this paper, a micromechanical model is presented to simulate the mechanical response of bimodal nanostructured Al and the particle-reinforced aluminum matrix composite (PAMC). The constitutive relations for different phases are addressed in the model, as well as the contribution of microcracks. Numerical results show that the model can successfully describe the enhanced strength and ductility of the bimodal nanostructured Al, and the predictions of the PAMC are in good agreement with the experimental data. It is worth noting that the strength and ductility are sensitive to the volume fraction of constituents and the distribution of microcracks in both bimodal nanostructured Al and PAMC. Therefore, the present theoretical results can be used to optimize the microstructure for improving the mechanical properties of nanostructured Al-based composites.


Nanocomposite Mechanism Microcrack Strength Ductility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. An, J. Qu, J. Luo, Y. Fan, L. Zhang, J. Liu, C. Xu, P.J. Blau, Aluminum nanocomposites having wear resistance better than stainless steel, J. Mater. Res. 26 (2011) 2479–2483.CrossRefGoogle Scholar
  2. 2.
    R. Valiev, Materials science: nanomaterial advantage, Nature 419 (2002) 887–889.CrossRefGoogle Scholar
  3. 3.
    A.S. Khan, B. Farrokh, L. Takacs, Effect of grain refinement on mechanical properties of ball-milled bulk aluminum, Mater. Sci. Eng., A 489 (2008) 77–84.CrossRefGoogle Scholar
  4. 4.
    M. Zakeri, A. Vakili-Ahrarirudi, Effect of milling speed and shaping method on mechanical properties of nanostructure bulked aluminum, Mater. Des. 37 (2012) 487–490.CrossRefGoogle Scholar
  5. 5.
    K. Umanath, K. Palanikumar, S.T. Selvamani, Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites, Compos. Part B 53 (2013) 159–168.CrossRefGoogle Scholar
  6. 6.
    M. Manoharan, M. Gupta, Effect of silicon carbide volume fraction on the work hardening behaviour of thermomechanically processed aluminium-based metal–matrix composites, Compos. Part B 30 (1999) 107–112.CrossRefGoogle Scholar
  7. 7.
    R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater. 3 (2004) 511–516.CrossRefGoogle Scholar
  8. 8.
    X. Huang, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science 312 (2006) 249–251.CrossRefGoogle Scholar
  9. 9.
    Y. Liu, J. Zhou, X. Ling, Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials, Mater. Sci. Eng. A 527 (2010) 1719–1729.CrossRefGoogle Scholar
  10. 10.
    L. Lu, X. Chen, X. Huang, K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009) 607–610.CrossRefGoogle Scholar
  11. 11.
    Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912.CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, T. Troy, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, E.J. Lavernia, High tensile ductility and strength in bulk nanostructured nickel, Adv. Mater 20 (2008) 3028–3033.CrossRefGoogle Scholar
  13. 13.
    S. Ramtani, G. Dirras, H.Q. Bui, A bimodal bulk ultra-fine-grained nickel: experimental and micromechanical investigations, Mech. Mater. 42 (2010) 522–536.CrossRefGoogle Scholar
  14. 14.
    G. He, J. Eckert, W. Löser, L. Schultz, Novel Ti-base nanostructure-dendrite composite with enhanced plasticity, Nat. Mater. 2 (2003) 33–37.CrossRefGoogle Scholar
  15. 15.
    B.O. Han, E.J. Lavernia, Z. Lee, S. Nutt, D. Witkin, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A 36 (2005) 957–965.CrossRefGoogle Scholar
  16. 16.
    B.Q. Han, J.Y. Huang, Y.T. Zhu, E.J. Lavernia, Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys, Acta Mater. 54 (2006) 3015–3024.CrossRefGoogle Scholar
  17. 17.
    Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, E.J. Lavernia, High tensile ductility and strength in bulk nanostructured nickel †, Adv. Mater. 20 (2008) 3028–3033.CrossRefGoogle Scholar
  18. 18.
    S. Shekhar, J. Cai, J. Wang, M.R. Shankar, Multimodal ultrafine grain size distributions from severe plastic deformation at high strain rates, Mater. Sci. Eng., A 527 (2009) 187–191.CrossRefGoogle Scholar
  19. 19.
    A.M.K. Esawi, N.T. Aboulkhair, Bi-modally structured pure aluminum for enhanced strength and ductility, Mater. Des. 83 (2015) 493–498.CrossRefGoogle Scholar
  20. 20.
    D. Poirier, R.A.L. Drew, M.L. Trudeau, R. Gauvin, Fabrication and properties of mechanically milled alumina/aluminum nanocomposites, Mater. Sci. Eng., A 527 (2010) 7605–7614.CrossRefGoogle Scholar
  21. 21.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminum alloys for aerospace applications, Mater. Sci. Eng., A 280 (2000) 102–107.CrossRefGoogle Scholar
  22. 22.
    M.A. Muñoz-Morris, C.G. Oca, G. Gonzalez-Doncel, D.G. Morris, Microstructural evolution of dilute Al–Mg alloys during processing by equal channel angular pressing and during subsequent annealing, Mater. Sci. Eng. A 375 (2004) 853–856.CrossRefGoogle Scholar
  23. 23.
    R. Jamaati, M.R. Toroghinejad, Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding, Mater. Sci. Eng., A 527 (2010) 4146–4151.CrossRefGoogle Scholar
  24. 24.
    R. Jamaati, M.R. Toroghinejad, High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes, Mater. Des. 31 (2010) 4816–4822.CrossRefGoogle Scholar
  25. 25.
    S.A. Sajjadi, H.R. Ezatpour, M.T. Parizi, Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes, Mater. Des. 34 (2012) 106–111.CrossRefGoogle Scholar
  26. 26.
    S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, P.V. Satyanarayana, X-ray peak broadening analysis of AA 6061 100–x–x wt.% Al2O3 nanocomposite prepared by mechanical alloying, Mater. Charact. 62 (2011) 661–672.CrossRefGoogle Scholar
  27. 27.
    M. Zabihi, M.R. Toroghinejad, A. Shafyei, Application of powder metallurgy and hot rolling processes for manufacturing aluminum/alumina composite strips, Mater. Sci. Eng., A 560 (2012) 567–574.Google Scholar
  28. 28.
    Z. Lee, V. Radmilovic, B. Ahn, E.J. Lavernia, S.R. Nutt, Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy, Metall. Mater. Trans. A 41 (2010) 795–801.CrossRefGoogle Scholar
  29. 29.
    R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, B. Niroumand, Comparison of the microstructure and mechanical properties of As-cast A356/SiC MMC processed by ARB and CAR methods, J. Mater. Eng. Perform. 21 (2012) 1–5.CrossRefGoogle Scholar
  30. 30.
    X. Guo, T. Yang, G.J. Weng, 3D cohesive modeling of nanostructured metallic alloys with a Weibull random field in torsional fatigue, Int. J. Mech. Sci. 101-102 (2015) 227–240.CrossRefGoogle Scholar
  31. 31.
    X. Guo, G.J. Weng, A.K. Soh, Ductility enhancement of layered stainless steel with nanograined interface layers, Comput. Mater. Sci. 55 (2012) 350–355.CrossRefGoogle Scholar
  32. 32.
    Q.D. Ouyang, X. Gu, X.Q. Feng, 3D microstructure-based simulations of strength and ductility of bimodal nanostructured metals, Mater. Sci. Eng., A 677 (2016) 76–88.CrossRefGoogle Scholar
  33. 33.
    X. Guo, G. Yang, G.J. Weng, The saturation state of strength and ductility of bimodal nanostructured metals, Mater. Lett. 175 (2016) 131–134.CrossRefGoogle Scholar
  34. 34.
    L. Zhu, X. Guo, H. Ruan, Simulating size and volume fraction dependent strength and ductility of nanotwinned composite copper, J. Appl. Mech. 83 (2016) 91–98.Google Scholar
  35. 35.
    L. Zhu, X. Guo, H. Ruan, J. Lu, Prediction of mechanical properties in bimodal nanotwinned metals with a composite structure, Compos. Sci. Technol. 123 (2016) 222–231.CrossRefGoogle Scholar
  36. 36.
    Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity, Int. J. Plast. 20 (2004) 753–782.CrossRefGoogle Scholar
  37. 37.
    K. Mitsuishi, M. Song, K. Furuya, R.C. Birtcher, C.W. Allen, S.E. Donnelly, Observation of atomic processes in Xe nanocrystals embedded in Al under 1 MeV electron irradiation, Nucl. Instrum. Methods A 148 (1999) 184–188.CrossRefGoogle Scholar
  38. 38.
    J.Y. Shu, N.A. Fleck, Strain gradient crystal plasticity: size-dependentdeformation of bicrystals, J. Mech. Phys. Solids 47 (1999) 297–324.CrossRefGoogle Scholar
  39. 39.
    H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B 60 (1999) 22–25.CrossRefGoogle Scholar
  40. 40.
    V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation, Acta Mater. 50 (2002) 61–73.CrossRefGoogle Scholar
  41. 41.
    H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening, Acta Metall. 29 (1981) 1865–1875.CrossRefGoogle Scholar
  42. 42.
    U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171–273.CrossRefGoogle Scholar
  43. 43.
    L. Capolungo, M. Cherkaoui, J. Qu, Homogenization method for strength and inelastic behavior of nanocrystalline materials, Springer, the Netherlands, 2006.CrossRefGoogle Scholar
  44. 44.
    C.W. Sinclair, W.J. Poole, Y. Bréchet, A model for the grain size dependent work hardening of copper, Scr. Mater. 55 (2006) 739–742.CrossRefGoogle Scholar
  45. 45.
    O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scr. Mater. 58 (2008) 484–487.CrossRefGoogle Scholar
  46. 46.
    B. Jiang, G.J. Weng, A composite model for the grain-size dependence of yield stress of nanograined materials, Metall. Mater. Trans. A 34 (2003) 765–772.CrossRefGoogle Scholar
  47. 47.
    L. Capolungo, M. Cherkaoui, J. Qu, On the elastic–viscoplastic behavior of nanocrystalline materials, Int. J. Plast. 23 (2007) 561–591.CrossRefGoogle Scholar
  48. 48.
    J. Li, G.J. Weng, A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials, Int. J. Plast. 23 (2007) 2115–2133.CrossRefGoogle Scholar
  49. 49.
    P. Barai, G.J. Weng, The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids, Int. J. Plast. 24 (2008) 1380–1410.CrossRefGoogle Scholar
  50. 50.
    P. Barai, G.J. Weng, Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding, Int. J. Plast. 25 (2009) 2410–2434.CrossRefGoogle Scholar
  51. 51.
    G.J. Weng, The overall elastoplastic stress-strain relations of dual-phase metals, J. Mech. Phys. Solids 38 (1990) 419–441.CrossRefGoogle Scholar
  52. 52.
    V.M.J. Sharma, K.S. Kumar, B.N. Rao, S.D. Pathak, Effect of microstructure and strength on the fracture behavior of AA2219 alloy, Mater. Sci. Eng., A 502 (2009) 45–53.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Traction PowerSouthwest Jiaotong UniversityChengduChina
  2. 2.Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and EngineeringSouthwest Jiaotong UniversityChengduChina
  3. 3.Department of Engineering Mechanics and Key laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang UniversityZhejiangChina
  4. 4.Department of Materials Science and Engineering and Advanced Materials Processing and Analysis CenterUniversity of Central FloridaOrlandoUSA

Personalised recommendations