Advertisement

Acta Mechanica Solida Sinica

, Volume 30, Issue 5, pp 550–556 | Cite as

Quantum effects on thermal vibration of single-walled carbon nanotubes conveying fluid

  • Ye-Wei Zhang
  • Lin Zhou
  • Bo Fang
  • Tian-Zhi Yang
Article

Abstract

In this paper, we investigate the microfluid induced vibration of a nanotube in thermal environment. Attention is focused on a special case that the law of energy equipartition is unreliable unless the quantum effect is taken into account. A nonlocal Euler—Bernoulli beam model is used to model the transverse vibration of a single-walled nanotube (SWCNT). Results reveal that the root of mean squared (RMS) amplitude of thermal vibration of the fluid-conveying SWCNT predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The quantum effect on the thermal vibration of the fluid-conveying SWCNT is more significant for the cases of higher-order modes, lower flow velocity, lower temperature, and lower fluid density.

Keywords

Quantum effects Law of energy equipartition Fluid-conveying SWCNT Euler beam theory Root of mean-squared amplitude 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Cai, J.M. Mataraza, Z.H. Qin, et al., Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nat. Methods 2 (2005) 449–454.CrossRefGoogle Scholar
  2. 2.
    G. Pastorin, W. Wu, S. Wieckowski, et al., Double functionalisation of carbon nanotubes for multimodal drug delivery, Chem. Commun. 11 (2006) 1182–1184.CrossRefGoogle Scholar
  3. 3.
    J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration and instability of carbon nanotubes conveying fluid, Compos. Sci. Technol. 65 (2005) 1326–1336.CrossRefGoogle Scholar
  4. 4.
    J. Yoon, C.Q. Ru, A. Mioduchowski, Flow-induced flutter instability of cantilever carbon nanotubes, Int. J. Solids Struct. 43 (2006) 3337–3349.CrossRefzbMATHGoogle Scholar
  5. 5.
    L. Wang, Q. Ni, On vibration and instability of carbon nanotubes conveying fluid, Comput. Mater. Sci. 43 (2008) 399–402.CrossRefGoogle Scholar
  6. 6.
    C.D. Reddy, C. Lu, S. Rajendran, et al., Free vibration analysis of fluid-conveying single-walled carbon nanotubes, Appl. Phys. Lett. 90 (2007) 133122.CrossRefGoogle Scholar
  7. 7.
    W.J. Chang, H.L. Lee, Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model, Phys. Lett. A 373 (2009) 982–985.CrossRefzbMATHGoogle Scholar
  8. 8.
    Y. Yan, X.Q. He, L.X. Zhang, et al., Dynamic behavior of triple-walled carbon nanotubes conveying fluid, J. Sound Vib. 319 (2009) 1003–1018.CrossRefGoogle Scholar
  9. 9.
    T. Natsuki, Q.Q. Ni, M. Endo, Wave propagation in single-and double-walled carbon nanotubes filled with fluids, J. Appl. Phys. 101 (2007) 034319.CrossRefGoogle Scholar
  10. 10.
    Y. Li, B. Fang, J. Zhang, et al., Vibration analysis of fluid-conveying nanotubes embedded in an elastic medium considering surface effects, Theor. Appl. Mech. Lett. 2 (2012) 031011.CrossRefGoogle Scholar
  11. 11.
    S. Govindjee, J.L. Sackman, On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Commun. 110 (1999) 227–230.CrossRefGoogle Scholar
  12. 12.
    A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10 (1972) 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    H.L. Lee, W.J. Chang, Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, J. Appl. Phys. 103 (2008) 024302.CrossRefGoogle Scholar
  14. 14.
    L. Wang, Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale, Comput. Mater. Sci. 45 (2009) 584–588.CrossRefGoogle Scholar
  15. 15.
    H.L. Lee, W.J. Chang, Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory, J. Phys.: Condens. Matter 21 (2009) 115302.Google Scholar
  16. 16.
    L. Wang, W. Guo, H. Hu, Flexural wave dispersion in multi-walled carbon nanotubes conveying fluids, Acta Mech. Solida Sin. 22 (2009) 623–629.CrossRefGoogle Scholar
  17. 17.
    Y.W. Zhang, T.Z. Yang, J. Zang, et al., Terahertz wave propagation in a nanotube conveying fluid taking into account surface effect, Materials 6 (2013) 2393–2399.CrossRefGoogle Scholar
  18. 18.
    J. Zang, B. Fang, Y.W. Zhang, et al., Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory, Phys. E 63 (2014) 147–150.CrossRefGoogle Scholar
  19. 19.
    R. Ansari, R. Gholami, S. Sahmani, et al., Dynamic stability analysis of embedded multi-walled carbon nanotubes in the thermal environment, Acta Mech. Solida Sin. 28 (2015) 659–667.CrossRefGoogle Scholar
  20. 20.
    L. Wang, Vibration analysis of fluid-conveying nanotubes with consideration of surface effects, Phys. E 43 (2010) 437–439.CrossRefGoogle Scholar
  21. 21.
    L. Wang, Surface effect on buckling configuration of nanobeams containing internal flowing fluid: a nonlinear analysis, Phys. E 44 (2012) 808–812.CrossRefGoogle Scholar
  22. 22.
    L. Wang, Y. Hong, H. Dai, et al., Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field, Acta Mech. Solida Sin. 29 (2016) 567–576.CrossRefGoogle Scholar
  23. 23.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381 (1996) 678–680.CrossRefGoogle Scholar
  24. 24.
    A. Krishnan, E. Dujardin, T.W. Ebbesen, et al., Young’s modulus of single-walled nanotubes, Phys. Rev. B 58 (1998) 14013.CrossRefGoogle Scholar
  25. 25.
    L. Wang, H. Hu, W. Guo, Thermal vibration of carbon nanotubes predicted by beam models and molecular dynamics, Proc. R. Soc. A 466 (2010) 2325–2340.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J. Hone, B. Batligg, Z. Benes, et al., Quantized phonon spectrum of single-walled carbon nanotube, Science 289 (2000) 1730–1733.CrossRefGoogle Scholar
  27. 27.
    J. Zimmermann, P. Pavone, G. Cuniberti, Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: minimal force-constant model, Phys. Rev. B 78 (2008) 045410.CrossRefGoogle Scholar
  28. 28.
    C.Y. Li, T.W. Chou, Quantized molecular structural mechanics modeling for studying the specific heat of single-walled carbon nanotubes, Phys. Rev. B 71 (2005) 075409.CrossRefGoogle Scholar
  29. 29.
    J.S. Wang, Quantum thermal transport from classical molecular dynamics, Phys. Rev. Lett. 99 (2007) 160601.CrossRefGoogle Scholar
  30. 30.
    A.V. Savin, Y.A. Kosevich, A. Cantarero, Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures, Phys. Rev. B 86 (2012) 064305.CrossRefGoogle Scholar
  31. 31.
    L. Wang, H. Hu, Thermal vibration of single-walled carbon nanotubes with quantum effects, Proc. R. Soc. A 470 (2014) 20140087.CrossRefGoogle Scholar
  32. 32.
    L. Wang, H. Hu, Thermal vibration of a rectangular single-layered graphene sheet with quantum effects, J. Appl. Phys. 115 (2014) 233515.CrossRefGoogle Scholar
  33. 33.
    R. Liu, L. Wang, Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics, Phys. Chem. Chem. Phys. 17 (2015) 5194–5201.CrossRefGoogle Scholar
  34. 34.
    T. Xiao, J. Liu, H. Xiong, Effects of different functionalization schemes on the interfacial strength of carbon nanotube polyethylene composite, Acta Mech. Solida Sin. 28 (2015) 277–284.CrossRefGoogle Scholar
  35. 35.
    S. Sharma, R. Chandra, P. Kumar, et al., Molecular dynamics simulation of polymer/carbon nanotube composites, Acta Mech. Solida Sin. 28 (2015) 409–419.CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, Y. Liu, H. Zhao, et al., Acoustic nanowave absorption through clustered carbon nanotubes conveying fluid, Acta Mech. Solida Sin. 29 (2016) 257–270.CrossRefGoogle Scholar
  37. 37.
    W.H. Duan, C.M. Wang, Y.Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics, J. Appl. Phys. 101 (2007) 24305–24307.CrossRefGoogle Scholar
  38. 38.
    Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, J. Appl. Phys. 98 (2005) 124301.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Ye-Wei Zhang
    • 1
  • Lin Zhou
    • 1
  • Bo Fang
    • 1
  • Tian-Zhi Yang
    • 1
    • 2
  1. 1.Department of AstronauticsShenyang Aerospace UniversityShenyangPR China
  2. 2.Department of MechanicsTianjin UniversityTianjinPR China

Personalised recommendations