Acta Mechanica Solida Sinica

, Volume 30, Issue 4, pp 374–389 | Cite as

A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers

  • Jun Liu
  • Choon Chiang Foo
  • Zhi-Qian Zhang


We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is developed using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.


Dielectric elastomer Electromechanical coupling Implicit multi-field finite element method Eigenvalue problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Pelrine, R. Kornblu, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%, Science. 287 (2000) 836–839.CrossRefGoogle Scholar
  2. 2.
    J. Huang, S. Shian, Z. Suo, D.R. Clarke, Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading, Adv. Funct. Mater 23 (2013) 5056–5061.CrossRefGoogle Scholar
  3. 3.
    C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors, Science 341 (2013) 984–987.CrossRefGoogle Scholar
  4. 4.
    H. Godaba, C.C. Foo, Z.Q. Zhang, B.C. Khoo, J. Zhu, Giant voltage-induced deformation of a dielectric elastomer under a constant pressure, Appl. Phys. Lett. 105 (2014) 112901.CrossRefGoogle Scholar
  5. 5.
    Z. Suo, Mechanics of stretchable electronics and soft machines, MRS Bull. 37 (2012) 218–225.CrossRefGoogle Scholar
  6. 6.
    I.A. Anderson, T.A. Gisby, T.G. McKay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines, J. Appl. Phys. 112 (2012) 41101.CrossRefGoogle Scholar
  7. 7.
    M. Bozlar, C. Punckt, S. Korkut, J. Zhu, Dielectric elastomer actuators with elastomeric electrodes, Cit. Appl. Phys. Lett. 101 (2012) 91907.CrossRefGoogle Scholar
  8. 8.
    S. Shian, K. Bertoldi, D.R. Clarke, Dielectric elastomer based “Grippers” for soft robotics, Adv. Mater. 27 (2015) 6814–6819.CrossRefGoogle Scholar
  9. 9.
    J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators, Adv. Mater. 28 (2016) 231–238.CrossRefGoogle Scholar
  10. 10.
    J.-Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin, Adv. Mater. 26 (2014) 7608–7614.CrossRefGoogle Scholar
  11. 11.
    R.D. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-Foy, B. McCoy, S. Kim, J. Eckerle, T. Low, From boots to buoys: promises and challenges of dielectric elastomer energy harvesting, Electroactivity in Polymeric Materials, Springer US, 2012, pp. 67–93.CrossRefGoogle Scholar
  12. 12.
    R. Kaltseis, C. Keplinger, S.J.A. Koh, R. Baumgartner, Y.F. Goh, W.H. Ng, A. Kogler, A. Tröls, C.C. Foo, Z. Suo, S. Bauer, Natural rubber for sustainable high-power electrical energy generation, RSC Adv. 4 (2014) 27905–27913.CrossRefGoogle Scholar
  13. 13.
    T. Li, S. Qu, W. Yang, Electromechanical and dynamic analyses of tunable dielectric elastomer resonator, Int. J. Solids Struct. 49 (2012) 3754–3761.CrossRefGoogle Scholar
  14. 14.
    B.-X. Xu, R. Mueller, A. Theis, M. Klassen, D. Gross, Dynamic analysis of dielectric elastomer actuators, Appl. Phys. Lett. 100 (2012) 112903.CrossRefGoogle Scholar
  15. 15.
    L. Liu, H. Chen, J. Sheng, J. Zhang, Experimental study on the dynamic response of in-plane deformation of dielectric elastomer under alternating electric load, Smart Mater. Struct. 23 (2014) 25037.CrossRefGoogle Scholar
  16. 16.
    J. Sheng, H. Chen, B. Li, Y. Wang, Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation, Smart Mater. Struct. 23 (2014) 45010.Google Scholar
  17. 17.
    U. Gupta, H. Godaba, Z. Zhao, C.K. Chui, J. Zhu, Tunable force/displacement of a vibration shaker driven by a dielectric elastomer actuator, Extrem. Mech. Lett. 2 (2015) 72–77.CrossRefGoogle Scholar
  18. 18.
    Z. Lu, H. Godaba, Y. Cui, C.C. Foo, M. Debiasi, J. Zhu, An electronically tunable duct silencer using dielectric elastomer actuators, J. Acoust. Soc. Am. 138 (2015) 236–241.CrossRefGoogle Scholar
  19. 19.
    J.W. Fox, N.C. Goulbourne, On the dynamic electromechanical loading of dielectric elastomer membranes, J. Mech. Phys. Solids. 56 (2008) 2669–2686.CrossRefGoogle Scholar
  20. 20.
    J. Zhu, S. Cai, Z. Suo, Resonant behavior of a membrane of a dielectric elastomer, Int. J. Solids Struct. 47 (2010) 3254–3262.CrossRefGoogle Scholar
  21. 21.
    P. Dubois, S. Rosset, M. Niklaus, M. Dadras, H. Shea, Voltage control of the resonance frequency of dielectric electroactive polymer (DEAP) membranes, J. Microelectromech. Syst. 17 (2008) 1072–1081.CrossRefGoogle Scholar
  22. 22.
    J. Zhu, S. Cai, Z. Suo, Nonlinear oscillation of a dielectric elastomer balloon, Polym. Int. 59 (2010) 378–383.CrossRefGoogle Scholar
  23. 23.
    J.W. Fox, N.C. Goulbourne, Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes, J. Mech. Phys. Solids. 57 (2009) 1417–1435.CrossRefGoogle Scholar
  24. 24.
    K. Jia, T. Lu, T.J. Wang, Response time and dynamic range for a dielectric elastomer actuator, Sens. Actuators A Phys. 239 (2016) 8–17.CrossRefGoogle Scholar
  25. 25.
    Z. Suo, Theory of dielectric elastomers, Acta Mech. Solida Sin. 23 (2010) 549–578.CrossRefGoogle Scholar
  26. 26.
    X. Zhao, Z. Suo, Method to analyze programmable deformation of dielectric elastomer layers, Appl. Phys. Lett. 93 (2008) 251902.CrossRefGoogle Scholar
  27. 27.
    S. Qu, Z. Suo, A finite element method for dielectric elastomer transducers, Acta Mech. Solida Sin. 25 (2012) 459–466.CrossRefGoogle Scholar
  28. 28.
    C.C. Foo, Z.-Q. Zhang, A finite element method for inhomogeneous deformation of viscoelastic dielectric elastomers, Int. J. Appl. Mech. 7 (2015) 1550069.CrossRefGoogle Scholar
  29. 29.
    D.L. Henann, S.A. Chester, K. Bertoldi, Modeling of dielectric elastomers: design of actuators and energy harvesting devices, J. Mech. Phys. Solids. 61 (2013) 2047–2066.MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Wang, M. Decker, D.L. Henann, S.A. Chester, Modeling of dielectric viscoelastomers with application to electromechanical instabilities, J. Mech. Phys. Solids. 95 (2016) 213–229.MathSciNetCrossRefGoogle Scholar
  31. 31.
    J. Zhou, W. Hong, X. Zhao, Z. Zhang, Z. Suo, Propagation of instability in dielectric elastomers, Int. J. Solids Struct. 45 (2008) 3739–3750.CrossRefGoogle Scholar
  32. 32.
    Z.-Q. Zhang, C.C. Foo, G.R. Liu, A semi-explicit finite element method for dynamic analysis of dielectric elastomers, Int. J. Comput. Methods. 12 (2015) 1350108.MathSciNetCrossRefGoogle Scholar
  33. 33.
    H.S. Park, T.D. Nguyen, Viscoelastic effects on electromechanical instabilities in dielectric elastomers, Soft Matter. 9 (2013) 1031–1042.CrossRefGoogle Scholar
  34. 34.
    H.S. Park, Z. Suo, J. Zhou, P.A. Klein, A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers, Int. J. Solids Struct. 49 (2012) 2187–2194.CrossRefGoogle Scholar
  35. 35.
    H.S. Park, Q. Wang, X. Zhao, P.A. Klein, Electromechanical instability on dielectric polymer surface: modeling and experiment, Comput. Methods Appl. Mech. Eng. 260 (2013) 40–49.CrossRefGoogle Scholar
  36. 36.
    S. Seifi, H.S. Park, Computational modeling of electro-elasto-capillary phenomena in dielectric elastomers, Int. J. Solids Struct. 87 (2016) 236–244.CrossRefGoogle Scholar
  37. 37.
    Tahoe, (2014)
  38. 38.
    T. Schlögl, S. Leyendecker, Electrostatic–viscoelastic finite element model of dielectric actuators, Comput. Methods Appl. Mech. Eng. 299 (2016) 421–439.MathSciNetCrossRefGoogle Scholar
  39. 39.
    W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, D. Wells, The deal.II Library, Version 8.4, J. Numer. Math. (2016) 135–141.Google Scholar
  40. 40.
    R. Ortigosa, A.J. Gil, C.H. Lee, A computational framework for large strain nearly and truly incompressible electromechanics based on convex multi-variable strain energies, Comput. Methods Appl. Mech. Eng. 310 (2016) 297–334.MathSciNetCrossRefGoogle Scholar
  41. 41.
    J.C. Simo, R.L. Taylor, K.S. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Eng. 51 (1985) 177–208.MathSciNetCrossRefGoogle Scholar
  42. 42.
    A.N. Gent, A new constitutive relation for rubber, Rubber Chem. Technol 69 (1996) 59–61.CrossRefGoogle Scholar
  43. 43.
    G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, John Wiley & Sons Ltd, 2000.Google Scholar
  44. 44.
    T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, 1987.Google Scholar
  45. 45.
    X. Zhao, W. Hong, Z. Suo, Electromechanical hysteresis and coexistent states in dielectric elastomers, Phys. Rev. B Cond. Matter. 76 (2007) 134113.CrossRefGoogle Scholar
  46. 46.
    W. Frei, Improving convergence of multiphysics problems, (2013).
  47. 47.
    SIMULIA, Abaqus Analysis User’s Guide V6.14, Section, SIMULIA, 2014 6.7.3.Google Scholar
  48. 48.
    J. Reinders, Intel Threading Building Blocks, O’Reilly Media, Sebastopol, CA, 2007.Google Scholar
  49. 49.
    T.A. Davis, Suitesparse: a suite of sparse matrix software, (2011).
  50. 50.
    Y.-K. Yong, Y. Cho, Numerical algorithms for solutions of large eigenvalue problems in piezoelectric resonators, Int. J. Numer. Meth. Engng. 39 (1996) 909–922.CrossRefGoogle Scholar
  51. 51.
    M. Heroux, Trilinos web page, (2016).
  52. 52.
    W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, John Wiley & Sons, 1990.Google Scholar
  53. 53.
    T. Li, C. Keplinger, R. Baumgartner, S. Bauer, W. Yang, Z. Suo, Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability, J. Mech. Phys. Solids. 61 (2013) 611–628.CrossRefGoogle Scholar
  54. 54.
    F. Wang, C. Yuan, T. Lu, T.J. Wang, Anomalous bulging behaviors of a dielectric elastomer balloon under internal pressure and electric actuation, J. Mech. Phys. Solids. 102 (2017) 1–16.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Institute of High Performance ComputingA* STARSingapore

Personalised recommendations